
MATHEMATICS OF COMPUTATION
VOLUME 44. NUMBER 170
APRIL. 19X5. PACIES 519-521

Modular Multiplication Without Trial Division

By Peter L. Montgomery

Abstract. Let N > 1. We present a method for multiplying two integers (called N-residues)

modulo N while avoiding division by N. N-residues are represented in a nonstandard way, so

this method is useful only if several computations are done modulo one N. The addition and

subtraction algorithms are unchanged.

1. Description. Some algorithms [1], [2], [4], [5] require extensive modular arith-

metic. We propose a representation of residue classes so as to speed modular

multiplication without affecting the modular addition and subtraction algorithms.

Other recent algorithms for modular arithmetic appear in [3], [6].

Fix N > 1. Define an A'-residue to be a residue class modulo N. Select a radix R

coprime to N (possibly the machine word size or a power thereof) such that R > N

and such that computations modulo R are inexpensive to process. Let R~l and N' be

integers satisfying 0 < R'x < N and 0 < N' < R and RRX - NN' = 1.

For 0 < i < N, let /' represent the residue class containing iR~x mod N. This is a

complete residue system. The rationale behind this selection is our ability to quickly

compute TRl mod N from T if 0 < T < RN, as shown in Algorithm REDC:

function REDC(r)

m «- iTmod R)N' mod R [so 0 < m < R]

t <-(T+ mN)/R

if t > N then return t - N else return t ■

To validate REDC, observe mN = TN'N = -Tmod R, so t is an integer. Also,

tR = Tmod N so t = TR'X mod N. Thirdly, 0 < T + mN < RN + RN, so 0 < t <

2N.

If R and N are large, then T + mN may exceed the largest double-precision value.

One can circumvent this by adjusting m so -R < m < 0.

Given two numbers x and y between 0 and N - 1 inclusive, let z = REDC(xy).

Then z = (xy)R~x mod N, so (xR-l)(yR~x) = zRx mod N. Also, 0 < z < N, so z is

the product of x and y in this representation.

Other algorithms for operating on N-residues in this representation can be derived

from the algorithms normally used. The addition algorithm is unchanged, since

xR~x + yR~x = zR~x mod N if and only if x + y = z mod N. Also unchanged are

Received December 19, 1983.

1980 Mathematics Subject Classification. Primary 10A30; Secondary 68C05.

Key words and phrases. Modular arithmetic, multiplication.

519

©1985 American Mathematical Society

0025-5718/85 $1.00 + $.25 per page

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

520 PETER L. MONTGOMERY

the algorithms for subtraction, negation, equality/inequality test, multiplication by

an integer, and greatest common divisor with N.

To convert an integer x to an ^-residue, compute xR mod N. Equivalently,

compute REDC((xmod N)(R2mod N)). Constants and inputs should be converted

once, at the start of an algorithm. To convert an ^-residue to an integer, pad it with

leading zeros and apply Algorithm REDC (thereby multiplying it by R'1 mod N).

To invert an TV-residue, observe (xR~x)~l = zR'1 mod N if and only if z =

R2x~l mod N. For modular division, observe (xR~l)(yR~x)~l = zR~x mod N if and

only if z = «(REDCi»)-1 mod JV.

The Jacobi symbol algorithm needs an extra negation if (R/N) = -1, since

(xR~x/N) = (x/N)(R/N).

Let M|N. A change of modulus from N (using R = R(N)) to M (using R = R(M))

proceeds normally if R(M) = R(N). If R(M) ¥= R(N), multiply each jV-residue by

(R(N)/R(M))~x mod M during the conversion.

2. Multiprecision Case. If N and R are multiprecision, then the computations of

m and mN within REDC involve multiprecision arithmetic. Let b be the base

used for multiprecision arithmetic, and assume R = b", where n > 0. Let T =

iT2„-iT2„_2 ■ • • T0)h satisfy 0 < T < RN. We can compute TR~l mod N with n

single-precision multiplications modulo R, n multiplications of single-precision

integers by N, and some additions:

c^O

for z := 0 step 1 to n - 1 do

W+.-i ••• 7/)» «-(0W, ••• T,)h +N*(T,N'mod R)

{cTl+H)b<-c + d+Tl+H

[Tis a multiple of b' + x]

[T + cb' + n+x is congruent mod N to the original T]

[0 < T < (R + b')N]

end for

¡f(cr2M_, ■•• T„)h>Nthen

return (cT2„_x ■■• T„)b- N

else

return (T2n_x •■■ T„)b

end if

Here variable c represents a delayed carry—it will always be 0 or 1.

3. Hardware Implementation. This algorithm is suitable for hardware or software.

A hardware implementation can use a variation of these ideas to overlap the

multiplication and reduction phases. Suppose R = 2" and N is odd. Let x =

ixn-ixn-2 '■' xo)2> where each x¡ is 0 or 1. Let 0 < y < N. To compute

xyR~l mod N, set S0 = 0 and Si+1 to (S, + x,y)/2 or (5, + x¡y + N)/2, whichever

is an integer, for i = 0,1,2,...,« — 1. By induction, 2'S, = (x,_x ■ ■ ■ x0)ymod N

and 0 < Si < N + y < 2N. Therefore xyR1 mod N is either S„ or S„ - N.

System Development Corporation

2500 Colorado Avenue

Santa Monica, California 90406

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

MODULAR MULTIPLICATION WITHOUT TRIAL DIVISION 521

1. J. M. Pollard, "Theorems on factorization and primality testing," Proc. Cambridge Philos. Soc, v.

76, 1974, pp. 521-528.

2. J. M. Pollard, "A Monte Carlo method for factorization," BIT, v. 15,1975, p. 331-334.

3. George B. Purdy, "A carry-free algorithm for finding the greatest common divisor of two integers,"

Comput. Math. Appl. v. 9,1983, pp. 311-316.

4. R. L. Rivest, A. Shamir & L. Adleman, "A method for obtaining digital signatures and public-key

cryptosystems," Comm. ACM, v. 21, 1978, pp. 120-126; reprinted in Comm. ACM, v. 26, 1983, pp.

96-99.

5. J. T. Schwartz, "Fast probabilistic algorithms for verification of polynomial identities," J. Assoc.

Comput. Mach., v. 27, 1980, pp. 701-717.

6. Gustavus J. Simmons, "A redundant number system that speeds up modular arithmetic," Abstract

801-10-427, Abstracts Amer. Math. Soc, v. 4, 1983, p. 27.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

