MATHEMATICS OF COMPUTATION
VOLUME 44, NUMBER 170
APRIL. 1985, PAGES 519-521

Modular Multiplication Without Trial Division
By Peter L. Montgomery

Abstract. Let N > 1. We present a method for multiplying two integers (called N-residues)
modulo N while avoiding division by N. N-residues are represented in a nonstandard way, so
this method is useful only if several computations are done modulo one N. The addition and
subtraction algorithms are unchanged.

1. Description. Some algorithms [1], [2], [4], [5] require extensive modular arith-
metic. We propose a representation of residue classes so as to speed modular
multiplication without affecting the modular addition and subtraction algorithms.

Other recent algorithms for modular arithmetic appear in [3], [6].

Fix N > 1. Define an N-residue to be a residue class modulo N. Select a radix R
coprime to N (possibly the machine word size or a power thereof) such that R > N
and such that computations modulo R are inexpensive to process. Let R™! and N’ be
integers satisfying0 < R"! < Nand0 < N’ < Rand RR"! — NN’ = 1.

For 0 < i < N, let i represent the residue class containing ;R mod N. This is a
complete residue system. The rationale behind this selection is our ability to quickly
compute TR™'mod N from T if 0 < T < RN, as shown in Algorithm REDC:

function REDC(T)
m « (T'mod R)N'mod R[so0 < m < R]
t < (T+mN)/R
ift > Nthenreturn: — Nelsereturn: B

To validate REDC, observe mN = TN'N = -Tmod R, so ¢ is an integer. Also,
tR=Tmod N sot= TR 'mod N. Thirdly, 0 < T+ mN < RN + RN, s0 0 <t <
2N.

If R and N are large, then T + mN may exceed the largest double-precision value.
One can circumvent this by adjusting mso -R < m < 0.

Given two numbers x and y between 0 and N — 1 inclusive, let z = REDC(xy).
Then z = (xy)R 'mod N, so (xR ') (yR™') = zR"'mod N. Also,0 < z < N, so z is
the product of x and y in this representation.

Other algorithms for operating on N-residues in this representation can be derived
from the algorithms normally used. The addition algorithm is unchanged, since
xR+ yR! = zR"'mod N if and only if x + y = zmod N. Also unchanged are

Received December 19, 1983.
1980 Mathematics Subject Classification. Primary 10A30; Secondary 68CO05.
Key words and phrases. Modular arithmetic, multiplication.

©1985 American Mathematical Society
0025-5718 /85 $1.00 + $.25 per page
519

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

520 PETER L. MONTGOMERY

the algorithms for subtraction, negation, equality /inequality test, multiplication by
an integer, and greatest common divisor with N.

To convert an integer x to an N-residue, compute xRmod N. Equivalently,
compute REDC((x mod N)(R?*mod N)). Constants and inputs should be converted
once, at the start of an algorithm. To convert an N-residue to an integer, pad it with
leading zeros and apply Algorithm REDC (thereby multiplying it by R"' mod N).

To invert an N-residue, observe (xR™!)™! = zR"'mod N if and only if z =
R*x~'mod N. For modular division, observe (xR™!)(yR™!)"! = zR"*mod N if and
only if z = x(REDC(y))"!mod N.

The Jacobi symbol algorithm needs an extra negation if (R/N) = -1, since
(xR'/N) = (x/N)(R/N).

Let M|N. A change of modulus from N (using R = R(N)) to M (using R = R(M))
proceeds normally if R(M) = R(N). If R(M) # R(N), multiply each N-residue by
(R(N)/R(M))' mod M during the conversion.

2. Multiprecision Case. If N and R are multiprecision, then the computations of
m and mN within REDC involve multiprecision arithmetic. Let b be the base
used for multiprecision arithmetic, and assume R = b", where n > 0. Let T =
(Ty,_1Ts,_ -+ Ty), satisfy 0 < T < RN. We can compute TR™'mod N with n
single-precision multiplications modulo R, »n multiplications of single-precision
integers by N, and some additions:

c<0

fori:=Osteplton —1do

@l y - 1)y« 0T, --- T), + N*(T,N"'mod R)

(cT,,) cc+d+T,,
[T is a multiple of b'*!]
[T + cb'*"*!is congruent mod N to the original T']
[0< T < (R+b)N]

end for
if (cT,_; -+ T,), = N then
return (¢T5,,_, -+ T,),— N
else
return (T,, , --- T,),
end if

Here variable ¢ represents a delayed carry—it will always be 0 or 1.

3. Hardware Implementation. This algorithm is suitable for hardware or software.
A hardware implementation can use a variation of these ideas to overlap the
multiplication and reduction phases. Suppose R = 2" and N is odd. Let x =
(x,_1x,_5 *+* xgy),, where each x, is 0 or 1. Let 0 <y < N. To compute
xR mod N, set S, =0and S,,, to (S, + x,y)/2 or (S, + x,y + N)/2, whichever
is an integer, for i = 0,1,2,...,n — 1. By induction, 2'S, = (x,_, --- x5)ymod N
and 0 < S, < N + y < 2N. Therefore xyR' mod N is either S, or S, — N.

System Development Corporation

2500 Colorado Avenue
Santa Monica, California 90406

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

MODULAR MULTIPLICATION WITHOUT TRIAL DIVISION 521

1. J. M. POLLARD, “Theorems on factorization and primality testing,” Proc. Cambridge Philos. Soc., v.
76, 1974, pp. 521-528.

2. J. M. POLLARD, “A Monte Carlo method for factorization,” BIT, v. 15, 1975, p. 331-334.

3. GEORGE B. PURDY, “A carry-free algorithm for finding the greatest common divisor of two integers,”
Comput. Math. Appl. v. 9, 1983, pp. 311-316.

4. R. L. RIVEST, A. SHAMIR & L. ADLEMAN, “A method for obtaining digital signatures and public-key
cryptosystems,” Comm. ACM, v. 21, 1978, pp. 120-126; reprinted in Comm. ACM, v. 26, 1983, pp.
96-99.

5. J. T. SCHWARTZ, “Fast probabilistic algorithms for verification of polynomial identities,” J. Assoc.
Comput. Mach.,v. 27, 1980, pp. 701-717.

6. GUSTAVUS J. SIMMONS, “A redundant number system that speeds up modular arithmetic,” Abstract
801-10-427, Abstracts Amer. Math. Soc., v. 4, 1983, p. 27.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

