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We present a practical probabilistic algorithm for testing large numbers of 
arbitrary form for primality. The algorithm has the feature that when it deter- 
mines a number composite then the result is always true, but when it asserts 
that a number is prime there is a provably small probability of error. The al- 
gorithm was used to generate large numbers asserted to be primes of arbitrary 
and special forms, including very large numbers asserted to be twin primes. 
Theoretical foundations as well as details of implementation and experimental 
results are given. . 

The problem of determining for given integers whether they are prime has 
occupied mathematicians for centuries. In the words of Gauss in his cele- 
brated “Disquisitiones Arithmeticae” [2, p. 3961: 

The problem of distinguishing prime numbers from composite numbers and of 
resolving the latter into their prime factors is known to be one of the most im- 
portant and useful in arithmetic. It has engaged the industry and wisdom of 
ancient and modern geometers to such an extent that it would be superlluous to 
discuss the problem at length. Nevertheless we must confess that all methods 
that have been proposed thus far are either restricted to very special cases or are 
so laborious and prolix that even for numbers that do not exceed the limits of 
tables constructed by estimable men, i.e., for numbers that do not yield to arti- 
ficial methods, they try the patience of even the practiced calculator. And these 
methods do not apply at all to larger numbers. 

Gauss proceeds to give several interesting algorithms for the determination 
of primality. We do not intend to present here a survey or bibliography of 
the extensive literature concerning testing for primality. All the existing 
methods require for arbitrary integers n a number of steps O(P) where E is 
some fraction such as + or $. Thus, experimental results indicate that around 
n = 1O65 each of these methods encounters some numbers untestable by it. 

For integers of certain special forms, the most notable example being the 
so-called Mersenne numbers n = 22, - 1, where p is a prime, there do exist 
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rather rapid tests for primality. But -arbitrary large integers defy even the 
most powerful computers, when tested by the conventional methods. 

In this paper we present a primality test applicable to arbitrary and very 
large integers. If we count an arithmetical operation such as addition, 
multiplication, or division, involving integers 0 < a, b B n as one step then 
the test of primality of n requires in the worst case c(log, n)” steps where c 
is about 100. Thus very large numbers are amenable to this test. In practice 
the number of steps in most cases is about c log, n for n which are prime, 
and about 3 log, n for numbers n that are composite even if they have no 
small divisors. 

The salient features of our method are that it is probabilistic, i.e., uses 
randomization within the computation, and that it produces the answer 
with a certain controllable miniscule probability of error. To be more 
precise, with full details to be given later, the algorithm produces and 
employs certain random integers 0 < b, ,..., bk < n. If the outcome of the 
whole test is that n is composite then it is always correct (barring computa- 
tional error). If the outcome asserts that II is prime then it may sometimes be 
wrong. But the probability that a composite number will be erroneously 
asserted to be prime is smaller than l/2 2k. If, say, k = 50, then the proba- 
bility of error is at most 1/21°0. 

This last statement does not mean that an integer IE asserted as prime by 
use of 50 random numbers is prime with probability at least 1 - 1/21°0. Such 
an interpretation is nonsensical since n is either prime or not. The correct 
meaning is that if the test is applied to m = 21°0 integers n, , n2 ,..., n, , then 
the expected number of wrong answers is one. These integers need not be 
pairwise different and no probability distribution on the integers to be tested 
for primality is assumed. 

Thus when we say that an integer n was asserted to be prime by use of 
50 random numbers, this is no proof that n is actually prime. What is stated 
is that n was asserted to be prime by a procedure that on the average will make 
no more than one mistake in 21°0 applications (even when testing the same n). 

The test and an earlier, slightly weaker, form of the theorem underlying 
it appeared in [S]. A different probabilistic test for primality was given by 
Solovay and Strassen [6]. 

In Section 3 we discuss the implementation and application of the test to 
the generation of very large numbers asserted to be primes of arbitrary or 
of a desired prescribed form. Large primes are useful in exact arithmetical 
computations involving large integers. By computing modulo a prime, one 
can avoid the use of fractions. Also, recently evolved digitalized signature 
systems are based on the easy availability of large primes. 

Tn the last section we present some of the experimental results which 
include examples of very large numbers asserted to be primes, twin primes, 
etc., very rapidly obtained on a medium-sized computer. 

641/12/1-10 
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1. THE FUNDAMENTAL THEOREM 

Throughout this paper (a, 6) denotes the greatest common divisor (g.c.d.) 
of the integers a, b, and res(a, b) denotes the least nonnegative residue of a 
when divided by b. By b / a we denote the fact that b divides a, i.e., 
res(a, b) = 0. 

DEFINITION. Let II be an integer. Consider the following condition to be 
denoted by W,(b), on an integer b: 

(9 1 <b<n; 

(ii)(a) bn-l + 1 mod n, or 

(b) 3i s.t. 2i 1 (n - 1) and 1 < (b(n-l)@ - 1, n) < n. 

Call such an integer b a witness to the compositeness of n. 
This condition was first considered by Miller [4], who used it to give a 

nonprobabilistic test for primality assuming the correctness of the extended 
Riemann hypothesis. Our test does not assume ERH and is considerably 
faster. 

Obviously if W,(b) holds for some b then n is composite. For if (ii)(a) holds 
then Fermat’s relation is violated. And (ii)(b) means that n has a proper 
divisor. Thus the adjective “witness to compositeness” is justified. It turns 
out that if n is composite then witnesses abound. 

THEOREM 1. If 4 < M is composite then 

3(n ; ‘) < c({b j u/‘,(b)}). 

By c(S) we denote the number of elements in the set S. 

Because of(i), (1) means that no more than $ of the numbers 1 ,< b < n 
are not witnesses. We require some lemmas for the proof of Theorem 1. 

Denote by E, the set of all c, 1 < c < n, (c, n) = 1. We have c(E,J = tin), 
where I$ is Euler’s function. The set E, is a group under multiplication mod n. 
If n = pk, where p is prime, then q&n) = pk - pk-l; for odd p, E, is a cyclic 
group. 

For an integer m denote by e(m) the largest i such that 2i / m. 
For a sequence m = <ml ,..., mk> of integers define res(b, m) = (sl ,..., s&, 

where si = res(b, mJ, 1 < i ,( k. When m is fixed abbreviate res(b, m) = 
res(b). 

LEMMAS. Letmi]nforl<i<k,and(mi,mj)=l,l<i<j<k, 
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and let m = (ml ,..., mk). For every s = <sl ,..., ski, s1 E Et,1 ,..., src E Em,, 
the number of elements in 

E, n {b j res(b, m) = s} 

is the same. 

Proof, Let t be the product of all primes dividing n, but not any of the mi , 
1 < i < k. Assume t # 1, for t = 1 the proof that follows has to be just 
slightly modified. By the Chinese Remainder Theorem there exists an integer 
b such that res(b, (m, t)) = (sl ,..., sk , 1;. Since nri / n, 1 < i < k, and t II, 
we may assume 1 < b < II. Now b E E, . Otherwise for some prime, p ~ n 
and p j b. This p divides some mi , or p 1 t. Since si = b - qimi , if p i mi 
thenp I si contradicting (mi , si) = 1. Similarlyp / t leads to the contradiction 
PI 1. 

Denote the restriction res( , m) j E, by J By the previous paragraph, 
f~ E,, ---t E,, ?i ... x E = G is a homomorphism of E, onto the direct 
product G.lThus .f-l(<!;,..., sk)) has the same number of elements for all 
(sl ,.. ., sk‘> E G. 

Let, for example, p 1 n, q j n, where p and q are different primes. The 
number of b G E, for which res(b, ( p, qj) = c,sl , sz:j is the same for every 
pair 1 < s1 < p - 1, 1 < se < q - 1. We shall employ in the sequel such 
considerations without further elaboration. 

LEMMA 3. Let p1 # pz be primes, q1 = ptl, q2 = piz. Assume q1q2 i II. 
Denote ti = (+(qJ, n - l), mi = $(qi)/ti , i = 1, 2. 

At most #n)/mImz of the integers b CG E, do not satisfy W,(b). 
lft, is even then at most &n)/2m,mz of the b E E, do not satisfv W,)(b). 

Proof. Let a, be a primitive root mod qi , i = 1,2. That is, uit - 1 mod qi 
if and only if +(qi) 1 t. 

Let b E E, then (b, qi) = 1 and b E a;i mod (I, , for some rI , r2. Because 
qlqz ! n we have that 

b+-lz 1 mod n (2) 

implies +(qJ 1 r&x - l), i = 1, 2. Hence it implies m, 1 ri , i = 1, 2, so 
rl = hImI, r2 = hzm, . 

Thus if res(b, (ql, q2)) = (sl , szj then for at most l/m,m, out of all pairs 
c<s, , sz) will (2) hold. By Lemma 2 all pairs (sl , sz) appear equally often 
as residue of b E E, , hence (2) will hold for at most +(n)/mImz of the integers 
b E E, . But if (2) does not hold then W,(b) is true. 

The sharper claim made, when t, is even, hinges on the fact, to be proved 
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next, that in this case even if (2) holds for b, in at least half the instances 
(ii)(b) holds, so that b is still a witness. 

Assume that t, is even and e(t,) = e(tJ; see the notation preceeding 
Lemma 2. Let i be such that (n. - 1)/2” = d(i) is an integer and ti r d(i), 
tJ2 / d(i), j = 1,2. Let b E E, satisfy (2) and adopt the above notation, 
concerning a, , a, , rl , r2, etc. If h, is odd and hz is even then $(ql) T h,m,d(i) 
and $(qJ / he&(i). Hence 

mod ql, 

mod q2. 

(3) 

(4) 

For such a b E E, (ii)(b) holds. Similarly if h, is even and h, is odd. There 
are four equally frequent possibilities for the parities of h, and h, . Thus for 
half of the b E E, satisfying (2), W,(b) does still hold. Hence at most 
~n)/2m,m, integers b E E, do not satisfy W,(b). 

Finally let t, be even, e(tl) > e(t&. Choose i andj so that t2 I d(i), t, 7 d(i), 
and t,/2i I d(i) where j is minimal with the last property. Still using the above 
notation for a b E E, satisfying (2), we have $(q.J j h,m,d(i) so that (4) holds. 
But bdfi) = 1 mod q1 holds only if 4(q1) / h,m,d(i), i.e., only if 2j [ h1 . Unless 
2j 1 h, we have (3), so that W,(b) is not true for at most #z)/2Gn1mz integers 
bEE,. But 1 <cj. 

Proof of Theorem 1. Let 4 < n be composite. If 1 < b < n and (b, n) f 1 
then (ii)(a) and consequently W,(b) holds. So that to prove (1) it suffices to 
show that at least 3&n)/4 of the b E E, satisfy W,(b). 

Assume that n = pa, 1 < k. Here $(n) = pk-l(p - 1) andp r (n - l), so 
P’;-l G $(p*)/(+(p”), n - 1) = m. By the argument at the beginning of the 
proof of Lemma 3 applied to a single prime, we have that at most $(n)/m 
of the b E E, satisfy (2) and hence satisfy not W,(b). If 9 < n then 5 < p or 
2 < k hence 4 < m and (1) follows. If n = 9, there are only two non- 
witnesses. 

Next let n have at least two different prime divisors p1 , pz , let qi = p”d 
be the maximal powers such that q1 1 n, q2 1 n, and assume that, say, 
4(q1) f (n - 1). Then 2 < ~(qJ(~(qd, n - 1) = ml . If $(qJ 7 (n - 1) 
then 2 < m2, and we have finished by the first statement of Lemma 3. 
Thus assume $(q2) I (n - 1). If pz # 2 then t, = #,q2) is even and by the 
second assertion of Lemma 3 at most $(n)/2m, < H(n)/4 (here m2 = 1) 
of the b E E, satisfy not W,(b). If pz = 2 then fin) < (n - 1)/2 and at 
most &n)/ml < (n - 1)/4 of the 1 < b < n satisfy (2). 

Finally let n = pFp$ ***pFr, 2 < r, satisfy +(pp) / (n - l), 1 < i < r. 
Then ki = 1, 1 < i < r. An easy calculation shows 3 < r. Such numbers 
do exist, e.g., (5), (6), and satisfy (2) for all b E E, . In honor of their dis- 



PROBABILISTIC ALGORITHM 133 

coverer [l] we call them Carmichael numbers. Let pr , pz , pz be three different 
prime divisors of n, (pi - 1) ) (n - l), 1 < i < 3. 

Assume e(p, - 1) = e(p, - 1) = e(p, - l), and let i be such that for 
(n - 1)/2” = d(i) we have (pi - 1) r d(i), (pj - 1)/2 1 d(i), 1 < j < 3. If 
b = ai* modp, , where ai is a primitive root modp, , 1 < i < 3, then by the 
analysis in the proof of Lemma 3, 1 < (bd(l) - 1, n) < n unless the ri are 
all even or all odd. For if, say, rl is even and r2 is odd then p1 j (bdci) - 1) and 
pz r (bdti) - 1). Thus not W,(b) holds for at most $$+I) of the b E E,, . 

The similar analysis of the cases e(p, - 1) = e(p, - 1) < e(p, - 1) and 
e(p, - 1) < e(p, - 1) < e(p, - I), is left to the reader. 

Tfn=p*q~risaCarmichaelnumberwithp=q=r=-lmod4, 
p < q < r. Then n = - 1 mod 4. Consequently 4 ‘I (n - 1) and i in (ii)(b) 
is just i = 1. Thus W,(b) holds for all b 6 E, , i.e., for the 

n (1 - (1 - #(l - $(l - +)) <n (1 - (1 - 5)‘) < $ 

numbers (b, n) # 1, and also for exactly g+(n) of the b E E, . 
Adding up: 

c({b I J+‘,(b)) < (+ + $j (n - 1). 

If Carmichael numbers of the above type with arbitrarily large smallest prime 
factor do exist, then (1) is asymptotically best possible. 

A systematic computer search for Carmichael numbers of this form was 
conducted by Oren by looking at triplets of primes 100 <p, g, r < 3000. 
Many instances were found. 

For example, for 

652969351 = 271 .811 .2971 (5) 

the fraction of witnesses is 0.7513. For 

2000436751 = 487 . 1531 - 2683 (6) 

the fraction of witnesses is 0.7507. Thus the constant Q in Theorem 1 seems 
to be best possible. 

2. THE ALGORITHM 

Given a number n we choose a k, determined by the desired reliability, 
and randomly pick 1 < b, ,..., bl, < n. 
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Let n - 1 = 2lm, where m is odd. For b = bi compute b” mod n. This 
can be done by about 1.5 log, m multiplications, see [2, p. 3981. Every time 
a number n < d is obtained, find dI = res(d, n) and continue. Thus only 
products of numbers a, b < n and divisions of d < na by n are involved. 
Next calculate the residues mod n of bzm,..., b2’” = bn-l. 

Since log, n = I + log, m, the evaluation of all the necessary powers of b 
will require 1.5 log, n multiplications of u, b < n and 1.5 log, n divisions 
of a d < n2 by n, altogether 3 log, n steps. 

If the residue of b”-l is not 1 then W,(b) holds. If that residue is 1, find 
(res(b2”“, n) - I, n) for 1 < i < I. Each g.c.d. computation can be performed 
by doing at most log, n subtractions and divisions by 2. If any one of these 
g.c.d.‘s is neither 1 nor n then W,(b) is true. Thus for each bi we compu- 
tationally determined whether W,(bbi) is true, and the total required number 
of steps is 3 log, n + I . log, n. 

If, for any 1 < i < k, W,(b,) is true then n is composite. If, for all 
1 < i < k, W,(bJ is not true, then the test asserts that n is prime. 

THEOREM 2. The above algorithm requires for n - 1 = 2lm, m odd, at 
most k . (2 * log, n + 1. log, n) J’teps. If n is prime then the result is always 
correct. For each composite n the test may declare n to be prime, but the 
probability of such error is smaller than 1/22k. 

Proof. Only the last statement requires proof. An error will occur only 
when the n to be tested is composite and the b, ,..., b, chosen in this particular 
run of the algorithm are all nonwitnesses. Becauses of Theorem 1, the 
probability of randomly picking a nonwitness is smaller than $. The proba- 
bility of independently picking k nonwitnesses is smaller than l/4” = l/22k. 
Thus the probability that for any given number n, a particular run of the 
algorithm will produce an erroneous answer is smaller than l/22”. 

Note that the theorem is formulated with respect to each n, no averaging 
over a range of n’s is necessary. For a given composite n the test may (rarely) 
give a wrong answer in one run and the correct: answer in other runs. Thus 
there are no n’s on which the algorithm behaves poorly. 

3. IMPLEMENTATION 

In implementing the algorithm we incorporate some laborsaving steps. 
First we test the given n for divisibility by any prime p < N, where, say 
N=looo. 

If n passed this sieve then we apply the algorithm. Suppose that we pick 
k = 30. An examination of the proof of Theorem 1 shows that for “most” 
composite n the probability of finding a witness in one try is much bigger 
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than 2. Jn fact, in actual runs when n was composite the witness was always 
the first or second b chosen. But even for n for which (1) is almost exact, the 
probability of error is l/2@’ < lo- l*. One expected error in a billion billion 
tests! This seems small when compared to the frequency of machine errors 
present in practical computations. 

The main application of the primality test is to produce large numbers 
asserted to be primes with specified properties. 

The overall strategy is to generate numbers of the specified form and test 
for primality until a number is asserted to be prime. Such searches lead to 
success rather quickly because in most cases the Prime Number Theorem 
ensures that the density of primes in the sequence mi searched is like l/i 
if the numbers satisfy ln(m() - I. In other cases an appropriate density 
statement can be derived from stronger hitherto unproven assumptions 
such as the extended Riemann hypothesis (ERH). In every instance 
actually tried, the search did terminate within practical time. 

As mentioned before, any primal&y test should incorporate trying small 
divisors. Thus in practice the full test is applied only to the numbers asserted 
to be primes. 

If desired, it is often possible to ensure that n - 1 = 2 * m, where m is odd 
so that the second part of checking W,, , that relating to (ii)(b), involves only 
b(n-1)/2. But even if this feature is not incorporated, a heuristic argument 
shows that the expected number of g.c.d. computations arising from (ii)(b) 
is two. Note that the notion of expected number used here does not have a 
precise meaning as in Theorem 2 and is invoked only heuristically. 

Suppose we want to find an “arbitrary” prime having 250 binary digits. 
Start by randomly generating a sequence m = (~~a~ ... azjo, ai E {0, l), 
a - 1. View m as an integer written in binary notation, say it is even. 
S:ccessively form the sums m + 1, m + 3 ,...; if desired omit those for which 
4 j (n - 1). For each n = m + i test for primality. Continue until a number 
is asserted to be prime. 

Because of the Prime Number Theorem, the search will not require testing 
a prohibitive number of sums m + i. The density of primes around n = 22” 
is l/in n > l/250. Thus, one can incorporate a stopping rule: If within 
500 tries no prime was found, drop the number m and restart with a new 
number m, [log, m] = 250. In this way a number asserted to be prime 
n = m + i, i < 1000, will usually be found very rapidly. 

For certain applications it is important to have a prime II so that n - 1 
has a large prime factor. This is achieved in a similar fashion. Suppose that 
we want 12 - 1 to have a prime factor p so that [log,p] = 200. Find, as 
before, such a number asserted to be prime. Form the numbers 2ip + 1, 
i = 1, 3,... . Test each number for primality. Again a number 4 = lp + 1 of 
the desired form is rapidly asserted as prime. If the arithmetical series with 
difference p does not rapidly find a number asserted to be prime (this has 
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never happened), then p can be discarded and another prime p1 can be used 
for restarting the search. 

These are just examples of searches actually conducted. The variations 
pertaining to other forms of primes, or to the testing of given numbers are 
obvious. 

4. SOME EXPERIMENTAL RESULTS 

V. Pratt has programmed this algorithm and together we planned some 
experiments. The computations were done on a medium-sized computer. 
Numbers with several hundred binary digits were generated and tested. 
Still, the computations, including searches, did not take more than minutes 
per number asserted to be prime. 

The first test was verification of the known results concerning primality 
and compositeness of n = 22, - 1, p < 500, p prime. Within about 10 min 
all answers were produced without a single error. This was mainly done to 
test the program. For Mersenne primes our test is about l/k as fast as the 
Lucas test which applies only to Mersenne numbers. 

Next the test was applied to generate some large numbers asserted to be 
primes along the lines explained in Section 3. Rather than load an arbitrary 
binary sequence m, the search started from powers of 2 and proceeded by 
decrements. The numbers 

2300 - 153 9 2400 - 593, 

were asserted to be the largest primes below 2300 and 2400, respectively, 
since the other numbers in the intervals are all composite. 

Finally the test was applied to discover what we believe are the hitherto 
largest known numbers asserted to be twin primes. In order to speed up the 
sieving process the search was started with a number m which is a product 
of many small primes. Then pairs of the form m e I + 821, m * 1 + 823, and 
m . I + 827, m * If 829 were tried. The pairs 821, 823 and 827, 829 are 
themselves twin primes. Within half an hour 

(200 ) Pi * 338 + 821, * 338 + 823, 
I 

were asserted to be twin-primes. These numbers are of order of magnitude 
10las. Five subsequent hours of search failed to discover additional pairs. 
This is the only case where any search required more than a few minutes. 
Of course, no Prime Number Theorem density estimates apply to twin primes. 
The reader’s guess as to the heuristic implications of this seeming gap in 
twin primes is as good as ours. 



PROBABILISTIC ALGORITHM 137 

In conclusion, let us raise a question concerning possible theoretical 
applications of this primal&y test, in addition to the practical applications 
mentioned in the Introduction. What conjectures pertaining to the distri- 
bution of primes can one formulate, lend support to, or disprove by use of 
this test? For example, are there some refined estimates for the density of 
primes around lOloo, perhaps consequences of some strong number- or 
function-theoretic conjectures, which one could experimentally check using 
the primality test. The author, together with V. Pratt, have tested the density 
of primes of the form n = x2 + 1 for n N 250, 21”), 2150, 2200, and found 
very good agreement with the Hardy-Littlewood conjecture on this density. 
These and other experimental results will be reported elsewhere. 

Note added May 10, 1978: Donald Knuth (and, it seems, several others) 
observed that the primality test can dispense with the g.c.d. computation. 
His observation is based on the following corollary of Theorem 1. 

Using the notation of Section 2, let n - 1 = 2z * m, where m is odd. Let 
0 < x < n, denote x0 = xm mod n, xi = XL, mod n, 1 < i < I. Thus 
y ~lr xn-1 mod n. - 1 

PROPOSITION. If 4 -=c n is composite and odd then for at least $(n - 1) of 
the 1 < x < n either xl # 1 or for some 1 < i < I we have xi = 1 and 
xiel fn- 1. 

Proof. By Theorem 1, if n is composite then for at least f(n - 1) of the 
1 < x -C n W,(x) holds. If Wn(x) holds then x1 # 1, or xz = 1 and for 
some 0 < j < I we have 1 < (xi - 1, n) < n. 

In the second case let i - 1, j < i - 1 < 1, be the last index such that 
xi-i # 1; thus xi = 1. We have xj = 1 mod p, where p is a proper divisor 
of n. Hence xi-r = 1 modp, since 

xi 1 = x?‘-‘-’ 
-- 3 mod n. 

Now xiv1 = n - 1 is impossible because it entails xiel - 1 = n - 2 being 
divisible by p, but p # 2. Thus xidl # n - 1 and xi = 1. 

Note that if the condition in the statement of the proposition holds for 
some x then n must be composite. Namely, if xz # 1 then Fermat’s relation 
does not hold. And if xiel # n - 1, xi = xiv1 = 1 mod n, then 1 has more 
than two square roots mod n so n is composite. 

The test for primality runs as in Section 2 except that when xz = 1 we need 
not compute the (xi - 1, n). Simply calculate x0 E xm mod n, then square 
mod n repeatelly until xiv1 + n - 1 and xi = 1, or until xE is reached. In 
any case we need never square x1-, . 
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