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A DETERMINANT FORMULA FOR THE NUMBER OF WAYS OF 
COLORING A MAP. 

BY GEORGE, D. BULXorFF. 

Suppose that a finite set of two-dimensional regions making up a simply 
or multiply connected closed surface are given, so that these form a map M. 
Each of these regions may be taken to be limited by closed curves, formed 
by a finite number of continuous boundary lines which the region has in 
common with other regions. The ends of these lines, at which three or 
more regions meet, are called vertices of the map. A coloring of the map 
consists in attributing to each region a color different from that of any 
region having in common with it a boundary line, but not necessarily 
different from that of a region meeting it at a vertex. 

The following fact will first be proved: The number of ways of coloring 
the given map M in X colors (X = 1, 2, * - *) is given by a polynomial P(X) 
of degree n, where n is the number of regions of the map M. In fact let 
7n,(i = 1, 2, ** , n) be the number of ways of coloring the map by using 
exactly i colors when mere permutations of the colors are disregarded. With 
this definition it is clear that 

Mi * X (X 1) .. *X * i + 1) 

represents the number of ways of coloring the given map in exactly i of 
the X colors counting two colorings as distinct when they are obtained by a 
permutation one from the other; for, of the i colors used, the first may be chosen 
in X ways, the second in X - 1 ways, and so on. If X is less than i the 
above term reduces to zero. 

But the total number of ways of coloring the given map in X colors is 
the sum of the number of ways of coloring it with 1, 2, * * *, n of these 
colors, since no more than n colors can be used. Accordingly the total 
number of ways is represented by 

P(X) = MIX + M2X(X - 1) + * * + M"X( - 1) * X - *(-n + 1 

for all values of X. It is clear that in general ml = 0 inasmuch as for n > 1 
no map can be colored in a single color, and that m = 1 since there is 
only one way of coloring M in n colors if permutation of the colors be dis- 
regarded. 

42 
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A DETERMINANT FORMULA FOR COLORING A MAP. 43 

In order to proceed to the effective determination of P(X) we consider 
the total number u - 1 of ways of forming from the map M(1) = M sub- 
maps MO), - _, M(k) of n - 1 regions, M(k+l), *.., M(z) of n - 2 regions, and 
so on to M(^) of one region, by successive coalescence of regions adjacent 
along a boundary line. Such a coalescence may be indicated by the 
removal of all the common boundary lines of the two regions which 
coalesce. The maps MO), *.., M(k) are obtained by one such step, the 
maps M(k+l), ... , MMl) by two such steps, and so on. 

At this point we introduce the symbol (i, k) to denote the number of 
ways of breaking down the map M in n regions to a submap of i regions by k 
simple or multiple coalescences, i. e., by picking out maps M, M(GL), ... , M(dk), 

each but the first being a submap of the preceding one, and the last one 
having i regions. It is apparent that we have (i, k) = 0 for k > n -a 
and that (i, n - i) represents the number of ways of making n - i successive 
simple coalescences. By definition we take (n, 0) =1 and (i, 0) = 0 for i< n. 

Let now one of the X colors be placed at random on each of the regions 
of any map M(i) of the ,u maps above defined. Each one of these arrange- 
ments will color one and one only of the maps M(i) and its submaps M(il), 
M02) *Y.. , namely that one obtained by a coalescence of all adjacent regions 
which receive the same colors. In consequence if we let a-, 02, **-, a,, 
denote the number of ways of coloring M(1), M(2) *.., M(^) respectively 
in X colors, we will have 

xni s+ 0-;+ *$(i = 1 2, - ,) 

in which the symbol ni denotes the number of regions in M(i, and Xn, is then 
the total number of ways of giving one of the X colors to each region; on 
the right appear the numbers oa, ail, oi,, . corresponding to MWi) and its 
submaps M('1), M) ***. Let eii for i 4 j be 1 or 0 according as M(i) does 
or does not contain MW as a submap, and let eii be 1; we may write the 
above equations in the form 

VI4 = vajfj (i =1, 2Y, **,,Y 

This set of jh equations is linear in the yA quantities a,, * *, , If we 
observe that because of the arrangement of the submaps of M according to 
a decreasing number of regions we have i1 > i, i2>ii, * * in the above equa- 
tions, it becomes clear that eii = 0 for i > j. Thus the determinant of 
this system of equations is 1 and therefore solving for o1 = P(X) we obtain 

Xnly 612, .. .. 

P(X) = BAA, e22X . . E2n 

Xn4Y& EMI2, ...Y CIn 
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44 GEORGE D. BIRKHOFF. 

a determinant formula for the number of ways of coloring the map in X 
colors. 

This determinant is of the order u, approximately of the magnitude n!. 
Furthermore it might be proved that the quantities esj determine the con- 
stitution of the map, so that if the determinant were written in full the 
structure of the complete map might be deduced from it. These two facts 
show the complicated character of the determinant. 

The evaluation of this determinant may be carried out in terms of the 
symbols (i, k) previously introduced. To this end let us consider a typical 
term 

V X>&2 C .3 ... 

where the - or + sign is taken according as j, a, (3, ***, K gives an odd or 
even permutation of 1, 2, **, i. e., according as the substitution 

t1 2 ... ,uA 

i, a **-. K 

is the product of an odd or an even number of transpositions. 
Any such term either reduces to zero or to A">. We shall consider 

how terms not zero may arise. 
If the above substitution is not the identical substitution it may always 

be decomposed into a product. of cyclic substitutions (P1, P2, * * *, Pk) com- 
posed of k elements and changing P1 to P2, P2 to P3, *.**, Pk to Pl* Such a 
cyclic substitution must contain the element 1; else there arises in the 
term a product of factors 

baby Ebcy * Ela 

which is zero necessarily since we. cannot have simultaneously a < b, 
b < c, *... 1 < a. It follows that the substitution degenerates into a single 
cyclic substitution at most, containing the element 1. 

The corresponding term is thus of. the form 

-4- XSj aEab * 'Ell (mm epp ... 

where the + or - sign is to be taken according as the cyclic substitution 
(1, j, a, *.A, 1) contains an odd or an even number of elements. Con- 
versely to every product of this sort which is not zero we have a single. 
term not zero of the determinant. 

Suppose now that we attempt to obtain the sum of all the terms of 
this kind for a given nj = i and a given number of elements k + 1 of this 
cyclic substitution. If none of the factors Ejar Eab, ... are to be zero the 
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A DETERMINANT FORMULA FOR COLORING A MAP. 45 

map MWj) contains M(a) as a submap, the map M(a) contains M(b) as a sub- 
map, and so on. Thus we obtain a sequence of k + 1 maps M, Mi, 
M~a', * **, M(M), each after the first a submap of the preceding one. Conse- 
quently there is one and only one such term corresponding to each way of 
breaking down M in k steps to some submap of i regions, and each such 
term has the same sign as (- 1) k. 

The stated terms therefore are (_ 1) k(i, k)Xi in value and the final 
formula for the number of ways of coloring the given map in X colors is 

n n-f 
P(X) E Xi_E ( 1)k(i, k). 

i=1 k=O 

The term in Xn, corresponding to the identical substitution, has the 
proper coefficient unity according to our previous convention by which the 
symbol (n, 0) has the value 1. 

As a first example of the formula we take the very simple case of a map 
of three regions which are adjacent each to each. We will have 

(2, 1) = 3, (1, 1) = 1, (1, 2) = 3, 
and 

P(X) = (3, 0)X3 - (2, 1)X2 + [-(1, 1) + (1, 2)]X = -(- 1)(X - 2). 

The validity of this formula may be verified at once by noticing that we 
can color any one of these three regions in X colors, a second region in the 
X - 1 remaining colors, and the third region in the X - 2 colors left after 
the first two regions are colored. 

As a second example we take the case of a map in five regions formed 
by a ring of three regions bounding an interior and exterior region. In 
this case the symbols (i, k) which enter have the values 

(4, 1) = 9, (3, 1) = 22, (3, 2) = 51; 
(2, 1) = 14, (2, 2) = 125, (2, 3) = 150; 
(1, 1) = 1, (1, 2) = 45, (1, 3) = 176, (1, 4) = 150 

so that 

P(X) = x- 9X4 + 29X3 - 39X2 + 18X = X(X - 1) (X - 2) (X - 3)2 

In this case also the validity of the formula may be at once verified, for the 
three regions of the ring must be in three distinct colors, while the interior 
and exterior regions may be in any fourth color different from these three 
colors. 
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46 GEORGE D., BIRKHOFF. 

Even in this second case the value of the symbols (i, k) is not immedi- 
ately obtained; and if we have a somewhat more complicated map, for 
example the map formed by twelve five-sided regions on the sphere, a con- 
siderable computation would be necessary to determine P(X) directly from 
the formula, or from the map itself. 

PRINCETON UmvIRsITY, 
May 4, 1912. 
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