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The Proof of Fermat’s
Last Theorem by

R.Taylor and A.Wiles
Gerd Faltings 

The proof of the conjecture mentioned in
the title was finally completed in Septem-
ber of 1994. A. Wiles announced this result

in the summer of 1993; however, there was a gap
in his work. The paper of Taylor and Wiles does
not close this gap but circumvents it. This article
is an adaptation of several talks that I have given
on this topic and is by no means about my own
work. I have tried to present the basic ideas to a
wider mathematical audience, and in the process
I have skipped over certain details, which are in
my opinion not so much of interest to the non-
specialist. The specialists can then alleviate their
boredom by finding those mistakes and correct-
ing them.

Elliptic Curves
For our purposes an elliptic curve E is given as
the set of solutions {x, y} of an equation
y2 = f (x), where f (x) = x3 + . . . is a polynomial of
degree three. Usually E is defined over the ra-
tional numbers Q; that is, the coefficients of f
are in Q. We also demand that all three zeros of
f are distinct (E is “nonsingular”). We may con-

sider E as those solutions in Q, R, or C, denoted,
respectively, E(Q ) , E(R), and E(C). One usually
includes in this set an infinitely distant point,
denoted ∞. With this addition, the solution set
has the structure of an abelian group, with ∞
as the neutral element. The inverse of (x, y) is
(x,−y), and the sum of three points vanishes if
they lie on a line. The group addition is given by
algebraic functions. As a group E(Q ) is finitely
generated (Mordell’s Theorem), E(R) is isomor-
phic to R/Z or to R/Z× Z/2Z ,  and
E(C) ∼= C/lattice (for example, y2 = x3 − x yields
the lattice Z⊕ Zi). For an integer n let E[n] de-
note the n-division points, that is, the kernel of
multiplication by n. Over C these are isomorphic
to (Z/nZ)2, and the coordinates are algebraic
numbers. For example, the 2-division points are
exactly ∞ and the three zeros of f (where y = 0).
The absolute Galois group Gal(Q/Q ) acts on
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them, since the determining equations have co-
efficients in Q. This yields Galois representa-
tions Gal(Q/Q ) → GL2(Z/nZ). Using a change of
coordinates, one can arrange that f has integer
coefficients. If one then reduces modulo a prime
number p, one obtains a polynomial over the fi-
nite field Fp. If the zeros of the reduced poly-
nomial are distinct then this yields an elliptic
curve over Fp. This is true for all prime numbers
p except for the finitely many prime divisors of
the discriminant of f. Also the choice of f is not
unique, but we do say that E has good reduction
at p if we can find an f such that the zeros mod-
ulo p are distinct. (These observations are not
completely true at p = 2 because of the term y2

.) Otherwise E has bad reduction at p. If in this
case only two zeros of fmodulo p coincide, one
says E has semistable bad reduction. E is called
semistable if at all p it has either good or semi-
stable reduction. The curve y2 = x3 − x is not
semistable at p = 2 (no CM-curve is semistable).

An example (which in the end will not exist)
of a semistable curve is the Frey curve. To a so-
lution of Fermat’s equation al + bl = cl (where
a, b, c are relatively prime, and l ≥ 3 is prime)
one associates the curve

E : y2 = x(x− al)(x− cl).
This curve has bad reduction exactly at the prime
divisors of abc . It has the following noteworthy
property: Consider the associated Galois repre-
sentation Gal(Q/Q ) → GL2(Fl). This representa-
tion is unramified (the analog of “good reduc-
tion”) at all prime numbers p at which E has
good reduction. Here one might have to say
“crystalline” for “unramified” if p = l. Because of
the particular form of the equation for E, this

is also true at all prime divisors p > 2 of abc .
Therefore the l-division points behave as if E had
good reduction at all p > 2. However, as we
shall see, there are no semistable elliptic curves
over Q with this property, and this is the desired
contradiction.

In order to reach the goal this way, one has
to replace elliptic curves by modular forms. That
this can be done follows from the conjecture of
Taniyama-Weil (which essentially is due to
Shimura). If E satisfies the conclusion of this con-
jecture, that is, if E is “modular”, then accord-
ing to a theorem of K. Ribet one can find a mod-
ular form for Γ0(2) which corresponds to the
representation of E[l]. However, there are no
such modular forms. The content of the papers
by R. Taylor and A. Wiles is exactly the proof of
the Taniyama-Weil conjecture for semistable el-
liptic curves over Q. To explain this we need a
few basic facts about modular forms.

Modular Forms
Let H = {τ ∈ C | Im(τ) > 0} be the upper half
plane, on which SL(2,R) acts by the usual
(aτ + b)/(cτ + d)-rule. The subgroup Γ0(N) of
SL(2,Z) consists of those matrices(

a b
c d

)
with c ≡ 0 mod N. A modular form (of weight
2) for Γ0(N) is a holomorphic function f (τ) on
H with 

f ((aτ + b)/(cτ + d)) = (cτ + d)2f (τ)

for (
a b
c d

)
∈ Γ0(N)

and f (τ) “holomorphic at the cusps”. This last
statement means in particular for the Fourier se-
ries (since f (τ + 1) = f (τ)) 

f (τ) =
∑
n∈Z

an · e2πinτ

that all an vanish for n < 0. If additionally
a0 = 0, then f is called a cusp form. The Hecke
algebra T acts on the space of cusp forms. It is
generated by Hecke operators Tp (for p - N
prime) and Up (for p |N). For the Fourier coef-
ficients one has 

an(Tpf ) =anp(f ) + pan/p(f ) ,
an(Upf ) =anp(f ) .

An eigenform is a common eigenform of all
Hecke operators. One can always normalize it so
that a1(f ) = 1; then ap(f ) is the corresponding
eigenvalue of Tp or Up . The above equations
allow one to determine all an recursively, and
therefore one can determine the eigenform f.
Conversely, one can construct for a given sys-
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tem {ap} of eigenvalues a Fourier series
f (τ) =

∑
ane2πinτ. According to a theorem of

A. Weil this is a modular form if and only if the
L-series L(s, f ) =

∑∞
n=1 ann−s has a holomorphic

extension to the full s-plane and satisfies a suit-
able functional equation. (This also must be true
for twists by Dirichlet characters.)

In case all ap are in Q, the eigenform f has
an associated elliptic curve E with good reduc-
tion outside the prime divisors of N. For p - N
the number of the Fp-rational points E(Fp) is
equal to ]E(Fp) = p + 1− ap . Conversely one can
define for each elliptic curve E over Q a Hasse-
Weil L-series L(s, E), and it is conjectured that
it has the nice properties from above. Accord-
ing to the theorem of A. Weil it should thus be-
long to an eigenform with rational eigenvalues.
This is the content of the Taniyama-Weil con-
jecture.

Even when the coefficients ap are not in Q,
one can construct a Galois representation asso-
ciated to the eigenform.

The Hecke algebra T is a finitely generated Z-
module. We now replace it by the completion T̂
at a suitable maximal ideal m (a “non-Eisenstein
ideal”), with κ = T/m denoting the residue class
field of characteristic l. Then there is a two-di-
mensional Galois representation

ρ : Gal(Q/Q ) → GL2(T̂) ,

which is unramified (or crystalline, respectively)
at p - N , with

trace(ρ(Frobp)) = Tp
det(ρ(Frobp)) = p.

An eigenform with rational eigenvalues yields a
homomorphism T̂ → Zl, and ρ induces the
l-adic representation that is given by the asso-
ciated elliptic curve E, describing the Galois ac-
tion on all ln-division points of E. Conversely,
it is possible to show that E is modular if and
only if the associated l-adic representation can
be constructed in this manner.

Deformations
The l-adic representation is constructed for
l = 3, starting with the representation on the 3-
division points. This is known to be congruent
to a modular representation, and then the uni-
versal lifting of this representation is proven
modular, which is the core of the proof. The
prime 3 is very special here. So one starts with
the consideration of l = 3.

One can restrict to the case that the 3-division
points yield a surjective map

Gal(Q/Q ) → GL(2,F3)

(in this argument 5-division points are also used
once). As PGL(2,F3) ∼= S4 (the symmetric group
on the four elements of P1(F3)) is solvable, the

representation on the 3-division points is al-
ready modular according to (“lifting”) theorems
by Langlands and Tunnell. This uses intensively
the special properties of the prime number l = 3.
For l = 2 the general theory does not work well
for various reasons, and for l ≥ 5 this begin-
ning is impossible. We now look for a deforma-
tion argument for the representations modulo
9, 27, 81, 243, 729, etc., to be successively rec-
ognized as being modular. For this one uses the
universal deformation of the representation
modulo 3: There is a Z3-algebra R of the form
R = Z3[[T1, . . . , Tr ]]/I (I is an ideal), and a “uni-
versal” Galois representation 

ρ : Gal(Q/Q ) → GL2(R)

with these properties: 

1. ρ is unramified (or crystalline, respectively)
for p - N (that is, E has good reduction at
p);

2. ρ has certain local properties at p |N (“cer-
tain” will not be discussed here);

3. det(ρ(Frobp)) = p for p - N ;
4. ρ mod (3, T1, . . . , Tr ) is our given repre-

sentation on E[3];
5. any other representation Gal(Q/Q ) →

GL2(A) with the properties 1)–4) arises in a
unique way via a homomorphism R→A.

The construction of R follows general prin-
ciples. Basically, one takes a set of generators
{σ1, . . . , σs} of the Galois group, and considers
the ring of power series in 4s variables and di-
vides by the smallest ideal I such that modulo
I one obtains a representation with 1), . . .,4), pro-
vided one assigns to σi the 2× 2-matrix which
has the four unknowns corresponding to σi as
coefficients.

After the construction we get the following
commutative diagram

where the two left mappings arise from the
modular Galois representation and from the one
of E. Wiles’s idea is now to show that R is iso-
morphic to T̂, because then the elliptic Galois
representation is automatically modular.

For this, naturally, one needs information on
R that is not supplied by the general construc-
tion. Let Wn denote the adjoint Galois repre-
sentation of sl(2,Z/3nZ) (2× 2-matrices with
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trace zero). Then, for example, the minimal num-
ber of generators r (R = Z3[[T1, . . . , Tr ]]/I) is
given by dimF3 H

1
f (Q ,W1), where H1

f denotes a
cohomology group satisfying certain local con-
ditions corresponding to 1), 2) from above. This
is also called a Selmer group. One sees this by
setting A = F3[T ]/(T2) in the definitions. One
can show (M. Flach) that the orders of H1

f (Q ,Wn)
are uniformly bounded in n. These orders occur
in the following numerical criterion for the equal-
ity R = T̂: there is a Z3-homomorphism T̂ → O,
where O is the integral closure of Z3 in a finite
extension of Q3. For simplicity we will assume
that O = Z3. It is known that T̂ is Gorenstein; that
is, HomZ3 (T̂,Z3) is a free T̂-module. The sur-
jection T̂ → Z3 then has an adjoint Z3 → T̂, and
the composition of these two maps is multipli-
cation by an element η ∈ Z3, which is well de-
fined up to a unit. Furthermore, η 6= 0. On the
other hand, let p ⊆ R be the kernel of the sur-
jection R→ T̂ → Z3. Then one has (“]” = order)
]p/p2 ≥ ]Z3/η · Z3 and equality if and only if
R = T̂ and this is also a complete intersection
(I can be generated by r elements). The left-
hand side ]p/p2 is identical to the order of the
Selmer group H1

f (Q ,Wn), for n > 0. The first at-
tempt tried to establish equality by using Euler
systems (invented by Kolyvagin). However, it
was only possible to show that p/p2 is annihi-
lated by η . This is the content of the theorem
of M. Flach. The higher levels of the Euler sys-
tem, however, could not be constructed.

The Proof
One first shows the minimal case and then re-
duces to it. By the minimal case we mean that
all primes of bad reduction occur already mod-
ulo 3 (and not only modulo higher powers). Ac-
cording to the theorem of Ribet and others (used
for l = 3 and not for l the exponent of Fermat’s
equation), the Galois representation belonging
to the curve modulo 3 is modular of level 3. In
the minimal case the computation of Euler char-
acteristics (Poitou-Tate) shows that H1

f (Q ,W1)
and H2

f (Q ,W1) have the same dimension r . For
each n one chooses r prime numbers q1, . . . , qr
≡ 1 mod 3n. Then one proceeds to use a sub-
group of Γ0(N). This subgroup contains the in-
tersection with Γ1(q1 · · ·qr ), and the quotient is
isomorphic to G = (Z/3nZ)r . The associated
Hecke algebra T̂1 is a free module over Z3[G],
with G-coinvariants T̂, and is the quotient of a
representation ring R1 = Z3[[T1, . . . , Tr ]]/I1 ,
which again can be generated by r elements.
The ideal I1 is small due to the free action of the
group G . Now one takes a limit n →∞, and in
the limit R1 and T̂1 become rings of power se-
ries and equal. Furthermore, one obtains R from
R1 and T̂ from T̂1 in both cases by putting in
the additional r relations “σi = 1”, where

σ1, . . . , σr are generators of G . Finally, R = T̂,
and this is a complete intersection.

To reduce to the minimal case, one estimates
how both sides of the inequality 

]p/p2 ≥ ]Z3/η · Z3

change as one proceeds from level M to a higher
level N (M|N) .  For the left-hand side
]H1

f (Q ,Wn) certain local conditions are weak-
ened, and one obtains an upper bound. For the
right-hand side there is the phenomenon of “fu-
sion”, that is, of congruences between oldforms
and newforms. Here a lower bound has been con-
structed by Ribet and Ihara. Luckily the two
bounds agree, and thus everything is shown.


