Classification of Boolean functions

The 7th International Workshop on Boolean Functions and their Applications

Valérie Gillot \& Philippe Langevin

BFA - September 11-16 2022

Introduction

James Maiorana (1991)

presents a recursive algorithm ${ }^{a}$ to classify Boolean functions in 6 variables under the action of the affine general linear group modulo functions of degree ≤ 1.

$$
R M(6,6) / R M(1,6)=B(2,6,6)
$$

${ }^{\text {a }}$ A classification of the cosets of the Reed-Muller code $R M(1,6)$, Mathematics of Computation, 1991

New approach

We present a descending procedure to classify in higher dimensions, namely the 68443 classes of

$$
R M(4,7) / R M(2,7)=B(3,4,7)
$$

This approach computes the 150357 classes of $B(2,6,6)$ in about 15 seconds !

Orbit - Stabilizer - Classification

- Let $(G, *)$ be a finite group
- Let U be a finite set
- A right group action of G on U is a mapping from $U \times G$ to U denoted by $(u, g) \longmapsto u \circ g$ such that :

$$
\text { (Identity) } u \circ e=u, \quad u \in U, e \text { identity of } G
$$

(Compatibility) $(u \circ g) \circ h=u \circ(g * h), \quad u \in U, g, h \in G$

- The orbit of an element $u: \mathcal{O}_{u}=\{u \circ g \mid g \in G\}$
- The stabilizer of $u: \operatorname{staB}(u)=\{g \in G \mid u \circ g=u\}$

A classification consists of the data

- a set of orbit representatives R
- a generator set of the stabilizer of each element of R

The space $B(s, t, m)$

\mathbb{F}_{2} the finite field of order $2, m$ a positive integer, $f: \mathbb{F}_{2}^{m} \longrightarrow \mathbb{F}_{2}$

Algebraic Normal Form

$$
f\left(x_{1}, x_{2}, \ldots, x_{m}\right)=f(x)=\sum_{S \subseteq\{1,2, \ldots, m\}} a_{s} X_{S}, \quad a_{S} \in \mathbb{F}_{2}, X_{S}(x)=\prod_{s \in S} x_{s} .
$$

Valuation and degree

- $\operatorname{val}(f)$ is the minimal cardinality of S for which $a_{S}=1$
- $\operatorname{deg}(f)$ is the maximal cardinality of S for which $a_{S}=1$
$B(s, t, m)$
denotes the space of Boolean functions of valuation $\geq s$ and degree $\leq t$
By convention val $(0)=\infty$ and $B(s, t, m)=\{0\}$ whenever $s>t$

Actions of affine general linear group

Action of $\operatorname{AGL}(m, 2)$ on Boolean functions

$\operatorname{AGL}(m, 2)$ acts naturally on Boolean functions, for $\mathfrak{s} \in \operatorname{AGL}(m, 2)$ and f a Boolean function :

$$
f \circ \mathfrak{s}(x)=f(\mathfrak{s}(x))
$$

The Reed-Muller spaces $R M(k, m)$

- $R M(k, m)=\{f \mid \operatorname{deg}(f) \leq k\}$
- $(0) \subset R M(0, m) \subset R M(1, m) \subset \cdots \subset R M(m-1, m) \subset R M(m, m)$

Actions of AGL $(m, 2)$ on Reed-Muller spaces

- Reed-Muller spaces are invariants under the action of AGL $(m, 2)$
- $\operatorname{AGL}(m, 2)$ acts on $R M(k, m) / R M(r, m), r \leq k$

$$
f \circ \mathfrak{s}(x) \equiv f(\mathfrak{s}(x)) \quad \bmod R M(r, m)
$$

Note that, $B(s, t, m)=R M(t, m) / R M(s-1, m)$

Objects at level r - Action modulo $R M(r, m)$

Equivalence at level r

$$
f \underset{r}{\sim} g \Longleftrightarrow \exists \mathfrak{s} \in \operatorname{AGL}(m, 2), \quad g \equiv f \circ \mathfrak{s} \bmod R M(r, m)
$$

Stabilizer at level r

$$
\operatorname{staB}_{m}^{r}(f)=\{\mathfrak{s} \in \operatorname{AGL}(m, 2) \mid f \circ \mathfrak{s} \equiv f \quad \bmod R M(r, m)\}
$$

$$
(f+u) \circ \mathfrak{s}=f \circ \mathfrak{s}+u \circ \mathfrak{s} \equiv f+(f+f \circ \mathfrak{s})+u \circ \mathfrak{s} \bmod R M(r-1, m)
$$

Boundary action

$\mathfrak{s} \in \operatorname{STAB}_{m}^{r}(f)$ induces an action on the space of forms $B(r, r, m) \ni u$ by :

$$
u \longmapsto u \circ \mathfrak{s}+f \circ \mathfrak{s}+f \quad \bmod R M(r-1, m)
$$

Orbit at level $r-1$ from classification at level r.

Lemma (Boundary)

If

- \mathcal{R} is a set of orbit representatives of degree k at level r,
- for each $f \in \mathcal{R}$,
- $\mathcal{U}(f)$ denotes a set of orbit representatives of $B(r, r, m)$ under the boundary action of $\operatorname{STAB}_{m}^{r}(f)$,
then the set

$$
\{f+u \mid \quad f \in \mathcal{R}, \quad u \in \mathcal{U}(f)\}
$$

is nothing but a set of orbit representatives with same degree at level $r-1$.

not yet a classification!

The order of $\mathrm{STAB}_{m}^{r-1}(f+u)$ is known, it remains to find a generators set...

Generators set of stabilizer

Let G a group acting on the right over a set U

- La set of generators of G
- $u \circ s$ the action of $s \in G$ on $u \in U$
- \mathcal{O}_{u} the orbit of u
- $u \circ R(x)=x, x \in \mathcal{O}_{u}$
- S_{u} the stabilizer of u
- s_{u} the order of S_{u}

Recall that,

$$
s_{u}:=\sharp S_{u}=\frac{\sharp G}{\sharp \mathcal{O}_{u}} \quad \text { (class formula) }
$$

Lemma (Schreier)

If $R: \mathcal{O}_{u} \rightarrow G$ is a map such that $u \circ R(x)=x$ for all $x \in \mathcal{O}_{u}$ then $\left\{R(x) \lambda R(x \circ \lambda)^{-1} \mid \lambda \in L, x \in \mathcal{O}_{u}\right\}$ spans the stabilizer S_{u} of u.

Find a generator set

```
Algorithm generatorSet ( u , L, \(s_{u}\) )
// return a generator set of the stabilizer of \(u\) under the action of the
        group ( \(G, *\) ) generated by \(L\) knowing its order \(s_{u}\)
    \(S \leftarrow \emptyset\)
    push( u )
    \(\mathrm{R}[\mathrm{u}] \leftarrow \mathrm{id}\)
    \(\mathrm{Y} \leftarrow\{\mathrm{u}\}\)
    while ( order \(\left.(\langle S\rangle)<s_{u}\right)\) \{
        \(\operatorname{pop}(\mathrm{x})\)
        for \(\lambda \in \mathrm{L}\{\)
        \(\mathrm{y} \leftarrow \mathrm{x} \circ \lambda\)
        if \(y \notin Y\{\)
                push (y)
                \(\mathrm{R}[\mathrm{y}] \leftarrow \mathrm{R}[\mathrm{x}] * \lambda\)
                \(\mathrm{Y} \leftarrow \mathrm{Y} \cup\{y\}\)
        \} else \{
            \(\mathrm{s} \leftarrow \mathrm{R}[\mathrm{x}] * \lambda *\) inverse \((\mathrm{R}[\mathrm{y}])\)
            if ( \(s\) not in <S>)
                        \(S \leftarrow S \cup\{s\}\)
            \}
        \}
    return S
```


Classify $R M(k, m)$ by descending procedure

$$
\begin{gathered}
B(k+1, k, m)=\{0\} \\
\downarrow \\
B(k, k, m) \\
\downarrow \\
B(k-1, k, m) \\
\downarrow \\
\vdots \\
\downarrow \\
B(r+1, k, m) \\
\downarrow \downarrow \\
B(r, k, m) \\
\downarrow \\
\vdots \\
\downarrow \\
B(0, k, m)
\end{gathered}
$$

Input : classification of $B(r+1, k, m)$

- \mathcal{R} an orbit representatives set at level r
- a generator set of $\operatorname{STAB}_{m}^{r}(f)$

Compute boundary orbits

 for each $f \in \mathcal{R}$, compute an orbit representatives set $\mathcal{U}(f)$ of the action of $\operatorname{STAB}_{m}^{r}(f)$ over $B(r, r, m)$
Apply generatorSet algorithm

 for each $f \in \mathcal{R}$, for each $u \in \mathcal{U}(f)$: determine a generator set of the stabilizer of $f+u$ at level $r-1$Output : classification of $B(r, k, m)$

Baby example $m=2$

- $\sharp \operatorname{AGL}(2,2)=\left(2^{2}-1\right)\left(2^{2}-2\right) \times 2^{2}=24$

Input : $B(3,2,2)=\{0\}$

Boundary action over $B(2,2,2)$: level 1

Boundary action over $B(1,1,2)$: level 0

- AGL $(2,2)=\langle S, T, U\rangle$, Shift (S), Tranvection (T), translation (U)
-

$\operatorname{AGL}(2,2)$	x	y
S	y	x
T	$x+y$	y
U	$x+1$	y

- at level $1 \bmod \operatorname{RM}(1,2)$:

$$
\begin{aligned}
x y \circ S & =y x \equiv x y \\
x y \circ T & =(x+y) y=x y+y \\
& \equiv x y \\
x y \circ U & =(x+1) y=x y+y \\
& \equiv x y
\end{aligned}
$$

- at level $0 \bmod R M(0,2)$:

$$
\begin{aligned}
(x y+x) \circ S & =y x+y \equiv x y+y \\
(x y+x) \circ T & =(x+y) y+x+y \\
& \equiv x y+x \\
(x y+x) \circ U & =(x+1) y+x+1 \\
& \equiv x y+x+y
\end{aligned}
$$

Numerical results for $m=7$

Table: Class numbers $\mathrm{n}(s, t, 7)$

$s \backslash t$	1	2	3	4	5	6	7
0	3	12	3486	$10^{13.5}$	$10^{19.8}$	$10^{21.9}$	$10^{22.2}$
1	2	8	1890	$1_{10} 1^{13.1}$	$1_{1019.5}$	$10^{21.6}$	$10^{21.9}$
2		4	179	$10^{11.0}$	$10^{17.3}$	$10^{19.5}$	$10^{19.8}$
3			12	68443	$10^{11.0}$	$10^{13.1}$	$10^{13.5}$
4				12	179	1890	3486
5					4	8	12
6						2	3
7							2

Full details of results

- Number of classes
- Orbit representatives set
- Generator set of stabilizer http://langevin/project/agl7/aglclass.html

Input : classification of $B(4,4,7)$

12 classes

Compute boundary orbits

- $\operatorname{dim} B(3,3,7)=35$
- RAM : 50 GB
- ≈ 3 days

genenatorSet

Few minutes

Output : classification of $B(3,4,7)$ 68443 classes

Conclusion

The descending procedure successfully classifies Boolean functions in 7 variables.

Our detailed numerical results may be used namely for :

- the analysis of cryptographic parameters of Boolean functions
- the estimation of covering radii of Reed-Muller codes

Valérie and Philippe in 1991 when Maiorana classifies $B(2,6,6)$!

