Classification of vectorral Boolean function


This page reports some numerical experiments related to the classification of vectorial Boolean Functions computed in April 2025.


Definitions

Let m, r, s, t be a positive integers. The space of vectorial Boolean functions from GF(2)^m into GF(2)^r of degree less or equal to t and valuation greater or equal s is denoted by V_r(s, t, m). The direct product of the linear group GL(2, r) by the affine group AG(2, m) acts over the spaces V_r( s, t, m ). Two vectorial functions f and g in V_r(s, t, m) are said to be s-equivalent when there exists A in GL(2,r) and B in AG(2, m ) such that

g = A o f o B modulo terms of degree less that s.

One notres that the notion of EA-equivalebce coincides with our notion 2-equivalence...

some class numbers

r=2

2 3 4 5 6 7 8
2 3 7 9 18 24 46
s=2 t=2

3 4 5 6 7 8
2 3 9 132 1235402 161818045056053
s=3 t=3

3 4 5 6 7 8
5 25 1352 153631102 41262807943298102 1092387286553048482
s=2 t=3

r=3

2 3 4 5 6 7 8
2 4 13 31 162 1092 32389
s=2 t=2

3 4 5 6
2 4 31 352713
s=3 t=3

3 4 5 6
7 143 21646276 187154060013783222
s=2 t=3
3 4 5 6
= 2 4 162
s=4 t=4
3 4 5 6
= 7 1648 187154060013783222
s=3 t=4

homogeneous quartic maps

1 2 3 4 5 6
4 18 162 4546 204506 3299059
s=4 t=4 m=6
problem :
find representatives, link with APNs...

(6,3)-bent function

There are 13 ccz classes of (6,3)-bent functions.
problem :
find all APN extension of that bent maps...
[ data ]

Valérie Gillot, Philippe Langevin, Abdoulaye Lo
imath,
last modification : april 2025.