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Abstract. We consider the metric space of the set of boolean functions
from a space over the field with two elements provided of the Hamming
distance. The non-linearity of a boolean function is equal to its dis-
tance from the space of affine boolean functions. The functions having
maximal non-linearity are called the bent functions. In this paper, we
generalize the well known notions of kernels and defaults of the the-
ory of quadratic forms, and we apply these notions to the study of the
non-linearity of the cubic functions.

1. Boolean functions

Let E be a space of finite dimension m over the finite field F2. The set of
functions from E into F2 is denoted by F2

E , an element of F2
E is a boolean

function. Let f be a boolean function, the set {x ∈ E | f(x) = 1} is the
support of f , it is denoted by supp(f). Conversely, for any subset X of E,
the indicating function 1X is the unic boolean function whose support is X.
With the operations inherited of the field F2, the set of boolean function is a
F2-algebra isomorphic to the algebra of subsets of E with the operations ∆
and ∩. If x1, x2, . . . , xm is any basis of the dual of E then the map sending a
polynomial p of F2[X1, X2, . . . , Xm] to the boolean function p(x1, x2, . . . , xm)
defines an epimorphism of algebras which the kernel is the ideal generated
by the polynomials X2

i − Xi. Hence, the algebra F2
E is isomorphic to the

quotient F2[X1, X2, . . . , Xm]/(X2
1 −X1, X

2
2 −X2, . . . , X

2
m−Xm). The degree

of a boolean function f , denoted by deg(f), is the smallest integer k such
that f has an antecedent of degree k by the morphism above. This definition
does not depend on the choice of the basis, moreover

Proposition 1. The space RM(k,m) of boolean functions of degree at most
k is generated by the indicating functions of the supports of the affine va-
rieties of codimension k. In other words, if f has degree less than k then
there exits N affine varieties of codimension k V1, V2, . . . , VN such that
f =

∑N
i=1 1Vi.

Proof. This is a result by Delsarte [3]. One can see it as a consequence of
the fact that the Reed-Muller codes are the only codes invariant under the
action of the general affine group, see also [11]. �

The weight of f , denoted by wt(f), is equal to the cardinality of the
support of f . The Hamming distance between two function f and g is the
weight of f + g. The minimal distance between f and any affine function
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from E into F2 is the non-linearity of f , that is :

δ(f) = inf
φ

wt(f + φ).

The maximal value of δ(f), when f ranges the set of boolean function, is the
covering radius of the first order Reed-Muller code. It is denoted by ρ(m),
a function with non-linearity ρ(m) is a bent function. These functions have
a great importance for cryptographic applications, see [14, 6].

2. Characters

Let (a, b) 7→ a.b be a symmetric non-degenerate bilinear symmetric form.
Let χ be the non trivial additive character of the field F2 : χ(0) = 1 and
χ(1) = −1. The set of boolean functions is embedded in the set of complex

function by the mapping f 7→ fχ, where fχ(x) = χ(f(x)) = (−1)f(x). The
Fourier transform of the complex function h is the complex function defined
by

ĥ(a) =
∑
x∈E

h(x)χ(a.x).

Par abus de langage, we say that f̂χ is the Fourier transform of f . The
relation :

(1) wt(f(x) + a.x+ b) = 2m−1 − χ(b)

2
f̂χ(a),

shows that δ(f) = 2m−1− 1
2‖f̂χ‖∞. This last equality justifies the definition

of spectral radius of the set of affine functions, that is :

(2) R(m) = min
f∈F2

E
‖f̂χ‖∞,

so that ρ(m) = 2m−1 − 1
2R(m).

For any complex function h, we have :

(3)
∑
a∈E

ĥ(a)ĥ(a) = 2m
∑
a∈E

h(a)h(a)

this is the famous Plancherel-Parseval identity. Its leads to the estimate

(4) R(m) ≤ 2
m
2

3. Quadrics

Let q be a quadratic form, that is a boolean function satisfying

(5) q(x+ y) = q(x) + q(y) + φ(x, y),

where φ is a symetric bilinear form, the bilinear form associated to q. One
defines the kernel and the default of q. [5] The kernel of q is the subspace
ker(q) = {x ∈ E | φ(x, y) = 0, ∀y ∈ E}; Clearly, the restriction of q to its
kernel is a linear form, and the default of q is the intersection ker(q)∩supp(q).
Let us denote by k the dimension of the kernel of q. A straigthforward
calculation show that, for any vector a in E, we have :

(6)
(
q̂χ(a)

)2
= 2m

∑
z∈ker(q)

χ(a.z) =

{
2m+k, si a⊥ ker(q);

0, sinon.
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On an other hand, we know that a non degenerate quadratic form has a
kernel of dimension 0 if m is even, and dimension 1 if m is odd. Hence, we
get the estimation

(7) 2
m
2 ≤ R(m) ≤ 2d

m
2
e

which is an equality if m is even. When m is odd, the exact value of R(m)
is known for m = 3, 5, 7, see [12] and [8]. Since the paper of Paterson and
Wiedeman [13], we know that there exists a boolean function of RM(8, 155)
which the Fourier transform has norm 216, consequently, for any odd m
greater than 15 , we have :

(8) R(m) ≤ 216× 2
m−15

2 =
27

32
2d

m
2
e

Conjecture 1. The spectral radius R(m) is equivalent to 2
m
2 .

Let k be an integer, 0 ≤ k ≤ m. We define the spectral radius of the
function of degree less or equal than k by Rk(m) = infdeg(f)≤k ‖f̂‖∞. The
goal of that paper is to present new notions in order to study R3(m). We
believe that the number of cubic functions is great enough to conjecture :

Conjecture 2. The spectral radii R(m) and R3(m) are asymptotically equiv-
alent.

Note that, R3(m) = R2(m) holds for m less or equal to 13, see [8] and
[10].

4. Kernel and defaults

In this section, we generalize the notions of kernel and default of the above
section. Let v be a vector of F2

m and let f be a boolean function. The
derivation of f in the direction of v is the boolean function x 7→ Dvf(x) =
f(x+ v) + f(x). If V is a system of r vectors, say {v1, v2, . . . , vr}, then the
derivation in the direction of the system V is the composition Dv1 ◦ Dv2 ◦
· · · ◦Dvr . The map V 7→ DV f(0) is a particular case of the combinatorial
polarization of H. Ward [15]. If the vectors of V are linearly dependent then
DV f is equal to zero, else it is equal to the convolutional product of f by
the indicating function of the support of the subspace S of F2

m generated
by V : DV f(x) = 1S ∗ f(x); that is the derivation of f in the direction of
S, introduced by Dillon in [6]. For any vector v , we have :

(9) Dv(
∑
S

aS 1S) =
∑
S

aS d(v, S) 1(v+S)∪S

where the S’s are affine spaces, and d(v, S) is equal to 1 if and only if v does
not lie in the direction of S. .

Proposition 2. Let f be a boolean function; Then

∀v ∈ E, deg(Dvf) ≤ deg(f)− 1, et ∃v ∈ E deg(Dvf) = deg(f)− 1

Proof. Note that is v is not in the direction of S then the codimension of
(v + S) ∪ S is equal to the codimension of S minus 1, the first point is a
consequence of 1. For the second point, we may assume that, the variable x1

appears in a monomial of degree deg(f). Hence, f reads g(x2, x3, . . . , xm) +
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x1h(x2, x3, . . . , xm) where h is a function of degree deg(f)− 1, which proves
the result since De1f = h. �

Let r be an integer. We define the map λ(r) which transforms the boolean
function f defined on F2

m in the boolean function defined over F2
mr by :

λ(r)(f)[x1, x2, . . . , xr] =
∑

λ1,λ(2),...,λ(r)

f
( r∑
i=1

λixi
)

= D{v1,v2,...,vr}f(0)

Proposition 3. The restriction of λ(r) to RM(r,m) is onto Λr(E), its kernel
is RM(r − 1,m).

Proof. Indeed, the proposition above shows that the function x 7→ D{v1,v2,...,vr}f(x)
is constant. �

When the degree of f is equal to r, the map λ(r)(f) is a r-linear map;
That is [1] the multilinear form associate to f . We define the kernel and the
default of f as in the degree 2 case :

ker(f) = {(x1, x2, . . . , xr−1) | λ(r)(f)[x1, x2, . . . , xr] = 0, ∀xr ∈ E}

def(f) = {(x1, x2, . . . , xr−1) | λ(r−1)(f)[x1, x2, . . . , xr−1] = 1}
The cardinality of ker(f) and def(f) are respectively denoted by k(f)

and d(f). These numbers are affine numerical invariants : for any affine
transformation T , we have

k(f) = k(f ◦ T ), et d(f) = d(f ◦ T ),

which comes from the equality, Dv(f ◦ T ) = (Dθ(v)f) ◦ T , where θ is the
linear map associate to the affine map T . For example, let 1 ≤ i, j, k ≤ m
be three distinct integers, and consider the monomial function xixjxk. Its
multilinear form is not zero, so that is a lift of the determinant function of
the space generated by ei, ej and ek.

(10) λ(3)(xixjxk)[x, y, z] = det
i,j,k

(x, y, z) =

xi yi zi
xj yj zj
xk yk zk


It follows that for any quadratic function q ∈ RM(2, 3), the function x1x2x3+
q(x) of RM(3, 3) has no default.

5. Cubics

In [2] C. Carlet proposes to study the non-linearity of a boolean function
by means of the hight order moments of its fourier transform. For example,
he gives the inequality : ∑

a∈E

(
f̂χ(a)

)4 ≥ 23m,

which is satisfied by any boolean function. The equality occurs if and only
if f is bent and m is even. In this section, we study the links between the
kernel and the moments of order 4 of the Fourier transform of a cubic. We
begin by two simple fact about the trilinear form of a cubic.
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It is easy to check that the trilinear form of the cubic f satisfies

(11) λ(3)(f)[x, y, z] = λ(2)(f)[x, y] +Dx,yf(z).

Which leads to the main formula of this paper,

Proposition 4. If f is a boolean function of degree 3 then∑
a∈E

(
f̂χ(a)

)4
= 22m

(
k(f)− 2d(f)

)
,

Proof. Indeed,∑
a∈E

(
f̂χ(a)

)4
= 2mfχ ∗ fχ ∗ fχ ∗ fχ(0)

= 2m
∑

x+y+z+t=0

χ
(
f(x) + f(y) + f(z) + f(t)

)
= 2m

∑
x,y,z

χ
(
f(x) + f(y) + f(z) + f(x+ y + z)

)
= 2m

∑
x,y,z

χ
(
f(x+ z) + f(y + z) + f(z) + f(x+ y + z)

)
= 2m

∑
x,y,z

(
λ(3)(f)[x, y, z] + λ(2)(f)[x, y]

)
= 22m

∑
(x,y)∈ker(f)

(
λ(2)(f)[x, y]

)
= 22m

(
k(f)− 2d(f)

)

(12)

�

We say that a boolean function exceeds the quadratic bound if its nonlin-
earity is greater than the non-linearity of any quadratic function. Of course,
this notion takes sense only is the case of odd m. From [9] and [10], we
know that if m is less or equal than 13 then the cubics do not exceed the
quadratic bound.

Proposition 5. Let f be a boolean function of degree 3 such that k(f) −
2d(f) ≥ 2m+1 then f does not exceed the quadratic bound.

Proof. That is a consequence of the following trick about meanings. Let
(ai)1≤i≤n be a sequence of n positive real numbers. Let µ be the meaning of
the ai’s, and let ν be the meaning of the (ai)

2’s. If ν > 2µ2 then there exist
i such that ai ≥ 2µ. Indeed, 1

n

∑n
i=1(ai − µ)2 = ν − µ2, and there exists i

such that |ai − µ| > µ, since ai ≥ 0, we get ai > 2µ. �

Note that if f has no default then k(f)− 2d(f) = k(f) ≥ 32m − 2, so :

Corollary 1. If f is cubic without default then f does not exceed the qua-
dratic bound.

This result was obtained in [11] but only for m ≤ 19. The proposition 4
shows that in order to construct cubics far from the first order Reed-Muller
code, we have to construct cubics f doing k(f)− 2d(f) small.
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6. Bounds

Let f be a boolean function of degree 3. The ordered pair (x, y) ∈ F2
m×

F2
m is in the kernel of f if and only if y is in the kernel of the quadratic

function Dxf . Let us denote by r(x) the dimension of the kernel of the
quadratic form Dxf . We have,

(13) | ker(f)| =
∑
x∈E

2r(x).

Proposition 6. Assume that m is even. If f is a boolean function of degree
3 then the kernel of f contains at least 5× 2m − 4 elements.

Proof. One remarks that the kernel of Dxf contains x. Hence, r(x) ≥ 2
since r(x) and m have the same parity. �

Proposition 7. Assume m odd. If f is a boolean function of degree 3 then
the kernel of f contains at least 3× 2m − 2 elements.

Proof. idem. �

In the next section, we will see that these bound are reached when m = 3
and m = 6. The above estimate must be compared with some results of
Goethals about the space of quadratic forms, [4, 7]. For any odd integer m,
there exists a space of dimension m of quadratic forms of rank 0 or m− 1.

For example, the space of quadratic forms x 7→ TrF2
m/F2

(
ax2t + (ax)2t+1)

,
where a ∈ F2

m.

Problem 1. Let τ be a trilinear alternate form. We have a natural map
from E into Λ2(E) which sends a ∈ E on a bilinear form. Let r(a) be the

rank of the image of a. What can we say about
∑

a∈E 2r(a) when τ varies ?

Problem 2. Let f be a boolean function. From proposition 1, we know
that f decomposes as

∑
S∈X 1S where X is a set of affine subspaces. Let x

and y be two vectors of E. The derivation of f in the direction of {x, y} is
Dx,y(f) =

∑
S∈X d(x, y, S)1S(x,y) where S(x, y) is the affine space S ∪ (x+

S) ∪ (y + S) ∪ (x + y + S), and where d(x, y, S) ∈ F2 is equal to 0 if and
only if the direction of S contains al least one vector of x, y or x+ y. Use
this description to construct a set X of variety of codimension 3 in order to
obtain a cubic with small kernel.

7. Numerical Results

The next tables give all the values of kernel, and default for all the cubic
functions, 4 ≤ m ≤ 7. Kernels and defaults are affine invariant, so we use
the action of the general linear group GL(m,F2) on the space of boolean
cubics modulo the space of quadratic functions to reduce the problem of
enumeration. In the paper [8], one can find systems of representatives for
small m. For each representative h, there is a three columns table. Let us
denote by k be the cardinality of the kernel of h. When q ranges the space
of the homogeneous quadratic functions ker(h+ q) is invariant, the value of
k appears in the header of the table. A row (d, δ, c) means that there are
c homogeneous quadratic functions q with d defaults, and δ is to k − 2d :
the quantity that appears in the RHS of (12). Note that if f is a boolean
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function of degree more than 2 then its kernel and default do not depend of
the affine terms.

m = 4, k = 88, h1 m = 4, k = 88, h2

24 40 56 24 40 56
0 88 8 24 40 56

m = 5, k = 352, h1 m = 5, k = 184, h3

132 88 512 60 64 192
144 64 336 48 88 480
96 160 168 36 112 320
0 352 8 0 184 32

m = 6, k = 1408, h1 m = 6, k = 736, h3

528 352 3584 336 64 192
624 160 25088 288 160 23520
672 64 1344 96 544 32
576 256 2352 240 256 8192
384 640 392 192 352 480

0 1408 8 144 448 320
0 736 32

m = 6, k = 316, h6 m = 6, k = 484, h4 m = 6, k = 400, h5

84 148 7680 168 148 10752 168 64 64
60 196 21504 144 196 18816 120 160 15680
36 244 3584 96 292 3136 96 208 14336

0 484 64 72 256 2240
24 352 448

m = 7, k = 5632, h1 m = 7, k = 760, h12

2640 352 917504 240 280 32256
2112 1408 17920 216 328 516096
2496 640 376320 192 376 959616
2688 256 772800 168 424 368640
2304 1024 11760 0 760 128
1536 2560 840 96 568 16128

0 5632 8 144 472 204288

m = 7, k = 2944, h3 m = 7, k = 928, h10

1104 736 32768 168 592 6144
1248 448 512000 216 496 92160
1296 352 983040 312 304 284672
1344 256 450624 264 400 632832
1152 640 93600 336 256 3072
384 2176 96 288 352 801792
960 1024 24192 240 448 236288
768 1408 480 192 544 27648
576 1792 320 144 640 11776

0 2944 32 48 832 768
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m = 7, k = 1936, h4 m = 7, k = 1600, h5 m = 7, k = 1264, h8

768 400 903168 672 256 161344 456 352 589824
672 592 111104 624 352 1376256 480 304 483840
816 304 903168 576 448 397824 384 496 225408
720 496 150528 480 640 26432 336 592 46080
576 784 18816 528 544 114688 288 688 18944
528 880 7168 384 832 17920 144 976 1024
384 1168 3136 288 1024 2240 192 880 768

0 1936 64 96 1408 448 0 1264 128
432 400 731136

m = 7, k = 2272, h7 m = 7, k = 1264, h6 m = 7, k = 928, h9

1008 256 368640 480 304 645120 336 256 24576
960 352 999936 336 592 7680 288 352 1476608
912 448 645120 432 400 1290240 240 448 544768
768 736 40320 384 496 129024 144 640 28672
720 832 43008 240 784 21504 192 544 21504

0 2272 128 144 976 3584 0 928 1024

m = 7, k = 592, h11

120 352 983040
96 400 1024000
48 496 81920
0 592 8192

List of homogeneous cubics :
h1 = X1X2X3, h2 = X1X2X3 +X2X3X4, h3 = X1X2X3 +X2X4X5,
h4 = X1X2X3 +X4X5X6, h5 = X1X2X3 +X2X4X5 +X3X4X6,
h6 = X1X2X3 +X1X4X5 +X2X4X6 +X3X5X6 +X4X5X6,
h7 = X1X2X7 +X3X4X7 +X5X6X7,
h8 = X1X2X3 +X4X5X6 +X1X4X7,
h9 = X1X2X3 +X2X4X5 +X3X4X6 +X1X4X7,
h10 = X1X2X3 +X4X5X6 +X1X4X7 +X2X5X7,
h11 = X1X2X3 +X1X4X5 +X2X4X6 +X3X5X6 +X4X5X6 +X1X6X7,
h12 = X1X2X3 + X1X4X5 + X2X4X6 + X3X5X6 + X4X5X6 + X2X4X7 +
X1X6X7

.
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