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Abstract. In this paper we report the following computational results on

partial spread functions in 8 variables: (i) the numbers of equivalence classes
of partial spread functions (in 8 variables) of all possible orders; (ii) the total

number of partial spread bent functions in 8 variables; (iii) the distribution of

the cardinalities of stabilizers (in GL(8, F2)) of partial spread bent functions
in 8 variables. The computational method is also described.

1. Introduction

Bent functions (definition in Section 2) were introduced by Rothaus [14] and
have since become ubiquitous in coding theory, cryptography and design theory.
Many families of bent functions have been discovered and many constructions of
bent functions have been developed. (See, for example, [1, 2, 4, 5, 8] and the
references therein.) Bent functions in ≤ 6 variables have been classified [14]. The
total number of bent functions in 8 variables has been determined [12]. However,
the classification of bent functions in an arbitrary (even) number of variables is
believed to be out of reach. Partial spread (PS) bent functions are an important
family of bent functions introduced by Dillon [4] based on certain collections of
t-dimensional subspaces of F2t

2 called partial spreads (definition in Section 2). A
partial spread consisting of n t-dimensional subspaces of F2t

2 is said to have order
n. The partial spread bent functions in 2t variables are the indicator functions
of partial spreads of order 2t−1 or 2t−1 + 1. The partial spread bent functions of
order 2t−1 (2t−1 + 1, respectively) form the PS(−) (PS(+), respectively) family
and PS = PS(−) ∪ PS(+); see Section 2 for more details. Classification of PS
bent functions in 2t ≥ 8 variables was unknown previously. The PS bent functions
in 8 variables are the partial spread functions in 8 variables of orders 8 and 9.
We announce that the classification of partial spread functions in 8 variables of
all possible orders (1 through 17) has been obtained through computer search. In
this paper we report the following data from this classification; more data of the
classification can be found at [9].

(i) the numbers of equivalence classes of partial spread functions in 8 variables
of all possible orders under the action of GL(8,F2);

(ii) the total number of PS bent functions in 8 variables;
(iii) the distribution of the cardinalities of stabilizers (in GL(8,F2)) of PS bent

functions in 8 variables.
(In (iii), the stabilizer of a PS bent function is the subgroup of GL(8,F2) which
fixes the bent function.) We also determined the equivalence classes of PS bent
functions in 8 variables that contain PSap bent functions, which are a special type
of PS bent functions. These computational results indicate that in 8 variables,

1



2 PHILIPPE LANGEVIN AND XIANG-DONG HOU

PS bent functions constitute a small portion of all bent functions and PSap bent
functions constitute a small portion of all PS bent functions. On the theoretic side,
the contribution of this paper is a classification of all partial spreads of order 4 in
F2t where F is an arbitrary field.

2. Partial Spreads and Bent functions

Throughout the paper, we assume that m is a positive even integer and we let
t = m

2 . The Fourier transform of a function g : Fm2 → C is the function ĝ : Fm2 → C
defined by

ĝ(a) =
∑
x∈Fm2

g(x)µ(a · x),

where µ is the canonical additive character of F2, i.e., µ(c) = (−1)c, and a · x
the standard inner product of Fm2 . When f : Fm2 → F2 is a Boolean function,
the Fourier transform of µ(f(x)) is called the Walsh transform of f and is usually
denoted by fW . Let ε : F2 → C be the map such that ε(0) = 0 and ε(1) = 1. (ε is
the Teichmüller character of F2.) Then µ ◦ f = 1− 2(ε ◦ f) and

(1) fW(a) =

{
−2 ε̂◦f(a) if a 6= 0,
2m − 2|f−1(1)| = −2m + 2|f−1(0)| if a = 0.

A bent function is a Boolean function f : Fm2 → F2 such that |fW(a)| = 2t

for all a ∈ Fm2 . Equivalently, using Parseval’s identity, f is bent if and only if
ε̂ ◦ f(a) = ±2t−1 for all 0 6= a ∈ Fm2 .

A partial spread of order n (an n-spread) in Fm2 is a set of n t-dimensional
subspaces H1, . . . ,Hn of Fm2 such that Hi∩Hj = {0} for all 1 ≤ i < j ≤ n. Clearly,
the order of a partial spread is less or equal to 2t + 1, and such a maximal partial
spread is called a spread. Let {H1, . . . ,Hn} be an n-spread. Let fi : Fm2 → F2 be
the indicator function of Hi, i.e., f−1

i (1) = Hi. The Boolean function f =
∑n
i=1 fi

is called an n-spread function. Note that

ε ◦ f =
n∑
i=1

ε ◦ fi − 2bn
2
cδ0,

where δ0 : Fm2 → C is the function that maps 0 to 1 and all 0 6= x ∈ Fm2 to 0. Thus
for 0 6= a ∈ Fm2 ,
(2)

ε̂◦f(a) =
n∑
i=1

ε̂◦fi(a)− 2bn
2
cδ̂0(a) =

{
−2bn2 c if a 6⊥Hi for all 1 ≤ i ≤ n,
2t − 2bn2 c if a⊥Hi for some 1 ≤ i ≤ n.

Moreover the multiplicity of the second value is n(2t − 1) and the multiplicity of
the first value is (2t + 1− n)(2t − 1). Clearly, f is bent if and only if n = 2t−1 + 1
or n = 2t−1. The partial spread functions with n = 2t−1 + 1 or n = 2t−1 form the
classes PS(+) and PS(−) respectively [4].

If f is a bent function on Fm2 , then for all A ∈ GL(m,F2), a, b ∈ Fm2 and c ∈ F2,
the Boolean function x 7→ f(xA + a) + b · x + c is also bent. The affine closure
of a set B of bent functions is the set of bent functions obtained from those in B
through the above transformation.
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3. Enumeration of Partial Spread Functions

The general linear group GL(m,F2) is the group of m×m invertible matrices over
F2. We treat elements of Fm2 as row vectors. Each element of φ ∈ GL(m,F2) can also
be viewed as an invertible linear transformation of Fm2 defined by φ(x) = xφ. For
φ, ψ ∈ GL(m,F2), φψ is the matrix product but φ ◦ ψ is the linear transformation
of Fm2 defined by (φ ◦ ψ)(x) = φ(ψ(x)) = x(ψφ). So φ ◦ ψ = ψφ. Since φ(ψ(x)) =
(ψφ)(x), the action of GL(m,F2) on Fm2 is a right action. For this reason, we
denote φ(x) (= xφ) by xφ. We will also consider the right action of GL(m,F2) on
partial spreads. In that case, the action of φ ∈ GL(m,F2) is also denoted by ( )φ.
If f : Fm2 → X is a function, where X is any set, and φ ∈ GL(m,F2), we define
φ(f) = f ◦ φ. Note that for φ, ψ ∈ GL(m,F2), φ(ψ(f)) = f ◦ ψ ◦ φ = f ◦ (φψ) =
(φψ)(f). So the actions of GL(m,F2) on the set of all functions from Fm2 to X is a
left action. Therefore we denote φ(f) by φf .

The action of GL(m,F2) on Fm2 induces a right action of GL(m,F2) on the set
of n-spreads and a left action of GL(m,F2) on the set of n-spread functions. Two
partial spreads (partial spread functions) are called equivalent if they belong to the
same GL(m,F2)-orbit. Note that inequivalent partial spreads can give equivalent
partial spread functions. For example, we know from [3] that there are 8 inequiv-
alent spreads when m = 8.1 But of course, all these spreads represent the same
Boolean function, i.e., the constant function 1.

By a collection of n-spread functions, we mean a set of n-spread functions such
that any n-spread function is equivalent to at least one in this collection. By a
system of representatives of n-spread functions, we mean a collection of n-spread
functions that are pairwise not equivalent. For each partial spread P of Fm2 let fP
denote the corresponding partial spread function. If a partial spread P contains
another partial spread Q, we say that P is an extension of Q. A partial spread
function f is called an extension of another partial spread function g if there exist
partial spreads P ⊃ Q such that f = fP and g = fQ. The following lemma is the
base of our approach; it allows us to construct a collection of (n + 1)-spreads by
extending the members of a collection of n-spreads.

Lemma 1. Let X be a collection of n-spread functions. If g is an (n + 1)-spread
function, then it is equivalent to an extension of some f ∈ X.

Proof. Write g = g1 + 1H , where g1 is an n-spread function and 1H is the indicator
function of some t-dimensional subspace H of Fm2 . There exists φ ∈ GL(m,F2)
such that φg1 ∈ X. Put f = φg1. We have φg = f + 1Hφ−1 . Write f = fP where
P is an n-spread. Since fP + 1Hφ−1 is an (n + 1)-spread function, it follows that
P∪{Hφ−1} is an (n+1)-spread and fP+1Hφ−1 = fP∪{Hφ−1}, which is an extension
of fP . Namely, φg is an extension of f . �

Using Lemma 1, we can construct a system of representatives of partial spread
functions by induction. Starting from a system of representatives X of n-spread
functions, we build a system of representatives of (n+ 1)-spreads functions and we
compute the corresponding number of partial spread functions in three phases :

(1) Extension. In this step, we build a collection of (n + 1)-spread functions
by constructing extensions of elements in X. Classification of 4-spreads

1A fact that we verified beside the present numerical experiment.
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Table 1. The total running time for the Classification of Partial
Spread Functions was 117484 secondes i.e. 33 hours. The column
(3) reports the size of the collections generated in the extension
phase.The column (6) reports the number of class found after the
classification phase. The column (8) the number of partial spread
functions.

extension classification stabilization
n time size time time class time psf
4 1 5 1 0 3 1 64374841666437120
5 15 233 55 10 22 10 20267057123180937216
6 69 4893 1162 385 341 6 1339989812392369324032
7 415 29691 7038 7246 3726 62 17833337132662061531136
8 1076 60943 14449 33501 9316 229 46056096661467073413120
9 681 31715 7516 8594 5442 19529 24520650576127040978944
10 219 8871 2109 698 1336 23 4731497045822911021056
11 75 2759 654 148 303 6 713809537614313684992
12 20 675 160 30 42 10 38019657690425327616
13 3 96 23 4 6 2 129740065512357888
14 0 11 3 0 1 59 44213490155520
15 0 3 1 0 1 11186 6579388416
16 0 2 0 0 1 NC 200787
17 0 1 0 0 1 NC 1

2574 139898 33171 50616 20541 31123

(Proposition 1) and linear algebra techniques similar to those in the proof
of Proposition 1 are used to avoid combinatorial explosion.

(2) Classification
• Splitting. We use the classification of quartic forms in 8 variables to

split the collection of (n + 1)-spread functions into several lists such
that equivalent (n+ 1)-spread functions belong to the same list.

• Reducing. We use an equivalence testing algorithm to reduce each list
up to equivalence.

(3) Stabilization. In this last step, we use an equivalence testing algorithm to
determine the order of the stabilizers of the representatives obtained in the
previous phase.

The details of the running time of the numerical experiment are reported in the
table Tab. (3).

4. Spread Extension

Extension from n-spread functions to (n+ 1)-spread functions is essentially ex-
tension from n-spreads to (n+ 1)-spreads. The latter is implemented as follows.

For two t× t matrices A and B over F2 such that rank [A B] = t, we let [A : B]
denote the row space of [A B], i.e., the linear span of the rows of [A B]. Any
n-spread is equivalent to one of the form

{[0 : I], [I : 0], [I : I], [I : A4], . . . , [I : An]}
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where A2(= 0), A3(= I), A4, . . . , An have the property that Ai − Aj is invertible
for all 2 ≤ i < j ≤ n; see [4, Theorems 5.3.1 and 5.3.2]. Therefore, to extend the
above n-spread is to find matrices An+1 such that An+1 − Aj is invertible for all
2 ≤ j ≤ n.

We include a proof of the above fact to familiarize the reader with our notation.
Assume that [B1 : C1], . . . , [Bn : Cn] is an n-spread where Bi and Ci are t × t
matrices over F2. Since rank [B1 C1] = t, there exists φ ∈ GL(m,F2) such that
[B1 : C1]φ = [0 : I]. Write [Bi : Ci]φ = [B′i : C ′i], 2 ≤ i ≤ n. For 2 ≤ i ≤ n, since
[B′i : C ′i] ∩ [0 : I] = {0}, B′i must be invertible. Thus [B′i : C ′i] = [I : Ai] where
Ai = B′i

−1
C ′i. Since [I : Ai] ∩ [I : Aj ] = {0}, 2 ≤ i < j ≤ n, Ai − Aj must be

invertible. Finally, let ψ =
[
I −A1(A2−A1)

−1

0 (A2−A1)
−1

]
∈ GL(m,F2). Then [0 : I]ψ = [0 : I],

[I : A1]ψ = [I : 0], [I : A2]ψ = [I : I]. So we may assume A2 = 0 and A3 = I.
All 2-spreads are equivalent to {[0 : I], [I : 0]} and all 3-spreads are equivalent

to {[0 : I], [I : 0], [I : I]}. In the remaining part of this section, we show that the
equivalence classes of 4-spreads can also be theoretically determined.

5. Classification of 4-Spreads

For any t × t matrix A over F2, let [A] denote the conjugacy class of A, i.e.,
[A] = {P−1AP : P ∈ GL(t,F2)}. Let A be the set of all t × t matrices having
no eigenvalues 0 and 1 and let Ā = {[A] : A ∈ A}. The symmetric group S3 (the
group of permutations on three letters) acts on Ā as follows: Write S3 in the form
of presentation

S3 = 〈α, β | α2 = β2 = 1, αβα = βαβ〉.
Then the action of S3 on Ā is defined by

α[A] = [A−1] and β[A] = [I −A].

The S3-orbit of [A] is

{[A], [A−1], [I −A], [(I −A)−1], [I −A−1], [I − (I −A)−1]}.
For A,B ∈ A, we say A ≈ B if [A] and [B] are in the same S3-orbit.

Proposition 1. Let B1, . . . , Bk be a system of representatives of the ≈ equivalence
classes in A. Then

(3) {[0 : I], [I : 0], [I : I], [I : Bi]}, 1 ≤ i ≤ k,
is a system of representatives of the equivalence classes of 4-spreads.

Proof. For each A ∈ A, let PA = {[0 : I], [I : 0], [I : I], [I : A]}.
1◦ We first show that if A,B ∈ A such that [A] = [B], then PA is equivalent

to PB . Assume that there exists P ∈ GL(t,F2) such that P−1AP = B. Let
σ = [ P P ] ∈ GL(m,F2). Then

[0 : I]σ = [0 : I], [I : 0]σ = [I : 0], [I : I]σ = [I : I]

and
[I : A]σ = [P : AP ] = [I : P−1AP ] = [I : B].

So PσA = PB .
2◦ Next, we show that if A,B ∈ A such that A ≈ B, then PA is equivalent to

PB . Since S3 is generated by α and β, we only have to prove that PA is equivalent
to PB under the assumption that α[A] = [B] or β[A] = [B].
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First assume α[A] = [B]. By 1◦, we may assume A = B−1. Let σ = [ I
I ] ∈

GL(m,F2). (Blocks of 0’s in matrix are usually left blank.) Then

[0 : I]σ = [I : 0], [I : 0]σ = [0 : I], [I : I]σ = [I : I]

and
[I : A]σ = [A : I] = [I : A−1] = [I : B].

Thus PσA = PB .

Now assume β[A] = [B]. By 1◦, we may assume A = I−B. Let σ =
[

−I
A−1 A−1

]
∈

GL(m,F2). Then

[0 : I]σ = [A−1 : A−1] = [I : I],

[I : 0]σ = [0 : −I] = [0 : I],

[I : I]σ = [A−1 : A−1 − I] = [I : B],

[I : A]σ = [I : 0].

So we also have PσA = PB .
3◦ Finally, we show that if PA is equivalent to PB , then A ≈ B. Let σ ∈

GL(m,F2) such that PσA = PB . Then σ maps at least two of [0 : I], [I : 0] and
[I : I] to {[0 : I], [I : 0], [I : I]}. This statement comprises a handful of possibilities.
Among those possibilities, we only consider two sample cases since the proofs in
other cases are identical.

Sample case (i). Assume [0 : I]σ = [I : 0] and [I : 0]σ = [0 : I]. Then σ = [ C
D ].

Thus
[I : I]σ = [D : C] = [I : D−1C],

[I : A]σ = [AD : C] = [I : D−1A−1C].

Therefore

(4)

{
D−1C = I,

D−1A−1C = B

or

(5)

{
D−1C = B,

D−1A−1C = I.

If (4) holds, then B = D−1A−1C = C−1A−1C. Thus [B] = [A−1], so A ≈ B. If
(5) holds, then B = D−1C = (A−1C)−1C = C−1AC. Thus [B] = [A], so A ≈ B.

Sample case (ii). Assume [0 : I]σ = [I : 0] and [I : 0]σ = [I : I]. Then σ = [E E
F 0 ].

Thus
[I : I]σ = [E + F : E] = [I + E−1F : I],

[I : A]σ = [E +AF : E] = [I + E−1AF : I].

Therefore

(6)

{
I + E−1F = 0,
I + E−1AF = B−1,

or

(7)

{
I + E−1F = B−1,

I + E−1AF = 0.
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If (6) holds, then

A = E(B−1 − I)F−1 = −F (B−1 − I)F−1 = F (I −B−1)F−1.

Thus [A] = [I − B−1], hence A ≈ B. If (7) holds, then A = −EF−1 which is
similar (conjugate) to −F−1E = (I − B−1)−1. Thus [A] = [(I − B−1)−1], hence
A ≈ B. �

Note. Proposition 1 still holds with F2 replaced by an arbitrary field. This is clear
from the above proof.

Proposition 1 with m ≤ 6 is essentially Theorem 5.4.4 of [4]. When m = 8,
Ā = {[B1], [B2], [B3], [B4]} where

B1 =
[

1
1 1

1
1 1

]
, B2 =

[
1

1
1

1 1

]
, B3 =

[
1

1
1

1 1 1 1

]
, B4 =

[
1

1
1

1 1

]
.

(The lists of elementary divisors of B1, . . . , B4 are {x2+x+1, x2+x+1}, {x4+x+1},
{x4 + x3 + x2 + x + 1}, {x4 + x3 + 1}, respectively.) It is easy to check that
B1, B2, B3 are pairwise not ≈-equivalent. However, [B4] = [B−1

2 ], so B4 ≈ B2.
Therefore, we know from Proposition 1 that there are 3 equivalence classes of 4-
spreads represented by PBi , 1 ≤ i ≤ 3.

6. Equivalence and classification

For the two last phases, we need an algorithm to test GL-equivalence of Boolean
functions. The algorithm we used is described in this section, alternative choices
are [13, 15, 6].

We first describe a näıve algorithm equiv for testing the equivalence of two
mappings from Fm2 to X, where X is any finite set; the algorithm is based on the
notions of good basis and candidates.

Let f and g be two mappings from Fm2 to X. They are said to be equivalent if
there exists φ ∈ GL(m,F2) such that g = f ◦ φ.

If f and g are equivalent then they have the same value distribution. For a value
v of f , let ν(v) denote its multiplicity. We say that a basis (b1, b2, . . . , bm) of Fm2 is
a good basis relatively to f if it minimizes the quantity

∏m
i=1 ν(f(bi)).

Assume that a good basis (b1, . . . , bm) of Fm2 relative to f has been chosen. For
each i, we determine the ith set of candidates:

Ci = {x ∈ Fm2 : g(x) = f(bi)}.
Note that if |Ci| 6= ν(f(bi)) for some i, then we already know that g is not

equivalent to f . If |Ci| = ν(f(bi)) for all 1 ≤ i ≤ m, we search for φ ∈ GL(m,F2)
by choosing φ(bi) ∈ Ci. The total number of candidates for φ is

∏m
i=1 |Ci|. This is

the reason we start with a good basis relative to f .
Let

B =

 b1...
bm


where (b1, . . . , bm) is a good basis relative to f . The algorithm equiv searches
for A ∈ GL(m,F2) such f(vB) = g(vA) for all v ∈ Fm2 until all candidates are
exhausted or a survivor is found. vA is represented by img and vB by src. The
algorithm is recursive. At the entrance of equiv(i, size), it is true that f(vB) =
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g(vA) for all binary vectors v representing integers < size. The procedure chooses
the ith row of A from the candidates in Ci. The symbol ⊕ denotes the addition
in Fm2 . Implementing vectors as m-bits integers, ⊕ is the bitwise xor, and the ith
canonical vector ei is 2i−1. Function rank(A, i) is the rank of the first i rows of A.

The algorithm can also be modified to compute the size of the stabilizer in
GL(m,F2) of a mapping f : Fm2 → X. Recall that the stabilizer of f is defined to
be {φ ∈ GL(m,F2) : φ(f) = f} and that |GL(m,F2)| divided by cardinality of the
stabilizer f gives the size of the equivalence class containing f .

The algorithm equiv

A : table of m vector // matrix
B : table of m vector // good basis
C : candidates
src, img : table of 2m vectors // source, image

algorithm equiv (i : integer; size : integer)
begin

if ( i > m ) then exit fi;
forall c in Ci do
A[i] := c;

if ( rank(A, i) = i ) then
x := 0; y := 0;
j := 0;
repeat
y := A[i]⊕ img [j];
x := B[i]⊕ src[j];
img [j ⊕ ei] := y;
src[j ⊕ ei] := x;
j := j + 1;

while ( ( j < size ) and ( f [x] = g[y] ) );
if ( j = size ) then
equiv (i+ 1, 2 ∗ size);
fi;

fi;
done;

end

We now turn to the testing of equivalence of Boolean functions. Due to the fact
that a Boolean function takes only two values, the algorithm equiv is not efficient
for checking the equivalence between two Boolean functions. It is easy to see that
two Boolean functions f and g are equivalent if and only if their Walsh transforms
are equivalent. Thus the algorithm equiv can be applied to Walsh transforms of
Boolean functions. However, this is still not efficient for determining equivalence
between bent functions since the Walsh transforms of bent functions take only two
values. In what follows, we propose a procedure to test equivalence of Boolean
functions which is suitable for the purpose of this paper.

Let f be a Boolean function. The derivative of f in the direction of u ∈ Fm2 , is
the Boolean function Deruf defined by Deruf(x) = f(x+ u) + f(x). We construct
a mapping f∗ from Fm2 to Z2m sending u to the Walsh spectrum of Deruf .
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Note. The Walsh spectrum of a Boolean function f is the set of values of the
Walsh transform of f counting multiplicities. For the computational purpose, the
Walsh spectrum of a Boolean function is simply a sequence of 2m integers in the
increasing order.

Lemma 2. Let f and g be two Boolean functions from Fm2 to F2. If f and g are
equivalent then f∗ and g∗ are equivalent.

Proof. Let φ ∈ GL(m,F2) such that g = f ◦ φ.

Derug(x) = g(x+ u) + g(x) = f(xφ + uφ) + f(xφ) = (Deruφf)
(
xφ
)
.

Hence the Walsh spectrum of Derug is equal to the Walsh spectrum of Deruφf , so
g∗ = f∗ ◦ φ. �

Therefore, we can use the following procedure to check the equivalence between
two Boolean functions f and g.

A procedure to determine equivalence of Boolean functions

1. Compute the mappings f∗ and g∗.
2. If the value distributions of f∗ and g∗ differ then f and g are not equivalent.
3. Apply the algorithm equiv to enumerate the linear transformations φ map-

ping f∗ to g∗.
4. If some φ from step 3 maps f to g then the Boolean functions are equiva-

lent. If no φ from step 3 maps f to g then the Boolean functions are not
equivalent.

When testing equivalence of partial spread functions in 8 variables, in addition
to the above procedure, we also make use of the classification of quartic forms in 8
variables [10]. A Boolean function f has a unique reduced polynomial representa-
tion

(8) f =
∑

S⊂{1,2,...,m}

aSXS , aS ∈ F2,

where XS denotes the monomial
∏
i∈S Xi. The degree of this polynomial, denoted

by deg f , is called the degree of the Boolean function f . Note that the degree of
the indicator function of a t-dimensional subspace is equal to m − t = t. Thus a
partial spread function has degree less or equal to t. Two Boolean functions f and
g of degree ≤ t are said to be weakly equivalent if there exists φ ∈ GL(m,F2) such
that

f ◦ φ = g + a Boolean function of degree less than t.

When t = 4, this weak equivalence corresponds to the equivalence of quartic forms
in 8 variables under the action of GL(8,F2). We know there are 999 equivalence
classes of quartic forms in 8 variables [7]. Efficient invariants for quartic forms in
8 are described in [10]. Those invariants can be used to split a collection of spread
functions in up to 966 lists; see [10] for the details. Finally we apply the above
procedure to each list to obtain a system of representatives.



10 PHILIPPE LANGEVIN AND XIANG-DONG HOU

Table 2. Numbers of equivalence classes of partial spread func-
tions in 8 variables of order n (2 ≤ n ≤ 17)

n nb of classes n nb of classes
2 1 10 1336
3 1 11 303
4 3 12 42
5 22 13 6
6 341 14 1
7 3726 15 1
8 9316 16 1
9 5442 17 1

Table 3. Distribution of the sizes of stabilizers of 8-spread func-
tions (PS(−) functions) in 8 variables

nb of classes stab size nb of classes stab size nb of classes stab size
8149 1 2 21 1 120
743 2 8 24 1 180
144 3 2 30 1 192
79 4 7 36 1 288

102 6 6 48 1 480
5 7 1 56 1 576

12 8 1 60 1 1152
4 9 1 64 1 1296

30 12 1 72 1 1344
1 16 2 96 1 1290240
6 18

Note. The cardinality of PS(−) is 46056096661467073413120 ≈ 275.29.

7. Computational Results and Observations

Our computational results are summarized in Tables 1 – 3. Table 1 gives the
numbers of equivalence classes of n-spread functions in 8 variables for all possible
orders. Table 2 enumerates the numbers of equivalence classes of 8-spread functions
(i.e., the PS(−) bent functions) in 8 variables according the sizes of stabilizers of
these functions. Table 3 gives the same information for 9-spread functions (i.e., the
PS(+) bent functions) in 8 variables.

The computational results on partial spread functions in 8 variables allow us to
observe some interesting phenomena.

Observation 1. Up to equivalence, there are only two partial spread functions in 8
variables of degree less than 4. They both belong to the PS(+) class; one has degree
2 and a stabilizer of cardinality 348364800; the other has degree 3 and a stabilizer of
cardinality 1008. The uniqueness of the quadratic partial spread function is easy to
understand. In fact, let f be an n-spread function on Fm2 which is quadratic. Then
the Walsh transform fW(a) (a 6= 0) takes values 4bn2 c or −2t+1 + 4bn2 c; see (1) and
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Table 4. Distribution of the sizes of stabilizers of 9-spread func-
tions (PS(+) functions) in 8 variables

nb of classes stab size nb of classes stab size nb of classes stab size
4063 1 2 30 1 192
797 2 6 32 1 288
198 3 6 36 3 384
108 4 1 42 1 480
130 6 6 48 1 576
21 8 1 56 1 1008
4 9 1 60 1 1152

38 12 4 64 1 1296
11 16 3 72 1 18432
8 18 4 96 1 86016
2 21 1 120 1 348364800

13 24 1 180

Note. The cardinality of PS(+) is 24520650576127040978944 ≈ 274.38.

(2). On the other hand, since f is quadratic, fW takes values ±2m−
k
2 , where k is the

quadratic rank of f . So we must have n = 2t−1 or 2t−1 + 1 and k = m, i.e., f must
be a PS and quadratic bent function. It is known that all PS(−) bent functions
have degree t (Remark 6.3.11 of [4]). So f ∈ PS(+). Thus |f−1(1)| = 2m−1 + 2t−1

and f(0) = 1. Up to GL-equivalence, x1x2 + x3x4 + · · ·+ x2t−1x2t + 1 is the only
quadratic function having these properties. By Theorem 6.3.12 of [4], this quadratic
function indeed belongs to PS(+).

The uniqueness of the cubic partial spread function in 8 variables is yet to be
explained.

Observation 2. The number of bent functions in 8 variables in the PS (= PS(+)∪
PS(−)) class is 70576747237594114392064 ≈ 275.9. Applying the affine translations
to this set, we get at most 283.9 bent functions in the affine closure of the set of
PS bent functions, up to affine terms. On the other hand, the number of bent
functions in 8 variables up to affine terms is about 297.29 as computed in [11]. The
portion of PS bent functions in 8 variables among all bent functions in 8 variables
is at most 283.9−97.29 = 2−13.39 which is very small. We also mention that according
to [11], there are at most about 272 in the affine closure of the set of Maiorana-
McFarland bent functions in 8 variables (up to affine terms) which also represent a
very small position of all bent functions in 8 variables. These comparisons suggest
the possible existence of new classes of bent functions in 8 variables (and in more
than 8 variables).

Observation 3. Let K = F2t and let L = F2m . There are 2t + 1 K-lines in L
which form a spread in L. Let α ∈ K∗ be an element of order 2t + 1. The K-lines
in L are precisely αiK, 0 ≤ i ≤ 2t. Let li denote the indicator function of αiK
in L. The sum of any 2t−1 of li’s is called a PSap bent function, so the family of
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PSap functions is

PSap =
{∑
i∈I

li : I ⊂ {0, . . . , 2t}, |I| = 2t−1
}
⊂ PS(−);

see [4]. Note that PSap functions are invariant under the action by K∗ through
multiplication. Also note that if f ∈ PSap, then f + 1 ∈ PS(+) and f + 1 has the
same stabilizer as f . Therfore, in the case m = 8, the size of the stabilizer of a
PSap bent function must be a multiple of |K∗| = 15 and must also appear as the
size of the stabilizer of some PS(+) bent function. According to Tables 2 and 3,
among 9316 classes of PS(−) bent functions, there are 6 classes whose stabilizer
sizes have these properties; the stabilizer sizes are 30 (2 times), 60, 120, 180 and
480. On the other hand, the number of elements in PSap is small (

(
17
8

)
= 24310)

and it is an easy task to generate all these functions to check their equivalence
with the representatives from the 6 classes. The computation shows that all the 6
classes contain PSap bent function. Hence up to GL-equivalence there are exactly
6 classes of PSap bent functions in 8 variables.
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[12] P. Langevin, P. Rabizzoni, P. Véron, J-P. Zanotti. On the number of bent functions with 8

variables. In BFCA’06, pages 125–135, Rouen, France, 2006.

[13] G. Leander. Normality of Bent Functions Monomial- and Binomial-Bent Functions. PhD
Thesis, Ruhr University Bochum, Germany, 2004.

[14] O. S. Rothaus. On “bent” functions. J. Combin. Theory Ser. A, 20:300–305, 1976.
[15] M. Serwecinski. A linear equivalence algorithm, Tatra Mt. Math. Publ, 37:113122, 2007.
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