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 ON THE SHORTEST SPANNING SUBTREE OF A GRAPH
 AND THE TRAVELING SALESMAN PROBLEM

 JOSEPH B. KRUSKAL, JR.

 Several years ago a typewritten translation (of obscure origin) of
 [1] raised some interest. This paper is devoted to the following
 theorem: If a (finite) connected graph has a positive real number
 attached to each edge (the length of the edge), and if these lengths
 are all distinct, then among the spanning' trees (German: Geriist)
 of the graph there is only one, the sum of whose edges is a mini-
 mum; that is, the shortest spanning tree of the graph is unique.

 (Actually in [1i this theorem is stated and proved in terms of the
 "matrix of lengths" of the graph, that is, the matrix [|aij|| where ai;
 is the length of the edge connecting vertices i and j. Of course, it is

 assumed that aij=aji and that aii=O for all i and j.)
 The proof in [1 ] is based on a not unreasonable method of con-

 structing a spanning subtree of minimum length. It is in this con-
 struction that the interest largely lies, for it is a solution to a prob-
 lem (Problem 1 below) which on the surface is closely related to one
 version (Problem 2 below) of the well-known traveling salesman
 problem.

 PROBLEM 1. Give a practical method for constructing a spanning
 subtree of minimum length.

 PROBLEM 2. Give a practical method for constructing an un-
 branched spanning subtree of minimum length.

 The construction given in [1] is unnecessarily elaborate. In the
 present paper I give several simpler constructions which solve Prob-
 lem 1, and I show how one of these constructions may be used to
 prove the theorem of [1]. Probably it is true that any construction

 Received by the editors April 11, 1955.
 1 A subgraph spans a graph if it contains all the vertices of the graph.
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 which solves Problem 1 may be used to prove this theorem.

 First I would like to point out that there is no loss of generality in

 assuming that the given connected graph G is complete, that is, that

 every pair of vertices is connected by an edge. For if any edge of G
 is "missing," an edge of great length may be inserted, and this does

 not alter the graph in any way which is relevant to the present pur-

 poses. Also, it is possible and intuitively appealing to think of missing

 edges as edges of infinite length.
 CONSTRUCTION A. Perform the following step as many times as

 possible: Among the edges of G not yet chosen, choose the shortest
 edge which does not form any loops with those edges already chosen.
 Clearly the set of edges eventually chosen must form a spanning

 tree of G, and in fact it forms a shortest spanning tree.

 CONSTRUCTION B. ILet V be an arbitrary but fixed (nonempty)
 subset of the vertices of G. Then perform the following step as many

 times as possible: Among the edges of G which are not yet chosen but
 which are connected eitlher to a vertex of V or to an edge already
 chosen, pick the shortest edge which does not form any loops with

 the edges already chosen. Clearly the set of edges eventually chosen
 forms a spanning tree of G, and in fact it forms a shortest spanning

 tree. In case V is the set of all vertices of G, then Construction B
 reduces to Construction A.

 CONSTRUCTION A'. This method is in some sense dual to A. Per-
 form the following step as many times as possible: Among the edges
 not yet chosen, choose the longest edge whose removal will not dis-
 connect them. Clearly the set of edges not eventually chosen forms a
 spanning tree of G, and in fact it forms a shortest spanning tree. It
 is not clear to me whether Construction B in general has a dual

 analogous to this.
 Before showing how Construction A may be used to prove the

 theorem of [1], I find it convenient to combine into a theorem a num-
 ber of elementary facts of graph theory. The reader should have no
 trouble convincing himself that these are true. For aesthetic reasons,
 I state considerably more than I need.

 PRELIMINARY THEOREM. If G is a connected graph with i vertices,
 and T is a subgraph of G, then the following conditions are all equivalent:

 (a) T is a spanning tree of G;

 (b) T is a maximal2 forest3 in G;

 2 A graph is "maximal" if it is not contained in any larger graph of the same sort;
 it is "minimal" if it does not contain any smaller graph of the saine sort.

 3 A "forest" is a graph which does not have any loops.
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 (c) T is a minimal2 connected spanning graph of G;
 (d) T is a forest with n -1 edges;
 (e) T is a connected spanning graph with n -1 edges.

 The theorem to be proved states that if the edges of G all have dis-

 tinct lengths, then T is unique, where T is any shortest spanning tree
 of G. Clearly T may be redefined as any shortest forest with n-I
 edges.

 In Construction A, let the edges chosen be called a1, , an in
 the order chosen. Let A i be the forest consisting of edges a, through ai.
 It will be proved that T=A.-1. From the hypothesis that the edges
 of G have distinct lengths, it is easily seen that Construction A pro-
 ceeds in a unique manner. Thus the Ai are unique, and hence also T.

 It remains to prove that T=An1. If T$&An,1, let as be the first
 edge of An-1 which is not in T. Then a1, * * *, ai-i are in T. TUai
 must have exactly one loop, which must contain as. This loop must

 also contain some edge e which is not in An1. Then TUai-e is a
 forest with n-I edges.

 As A i1'Je is contained in the last named forest, it is a forest, so
 from Construction A,

 length (e) > length (as).

 But then TUai-e is shorter than T. This contradicts the definition
 of T, and hence proves indirectly that T=An-l
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