An upper bound for the chromatic number of a graph and
its application to timetabling problems

By D.J. A. Welsh and M. B. Powell*

This paper points out the connection between the basic scheduling or timetabling problem with
the well known problem of colouring the vertices of a graph in such a way that (i) no two adjacent
vertices are the same colour and (ii) the number of colours used is a minimum. We give an
algorithm for colouring a graph subject to (i) and give a new easily determined bound for the
number of colours needed. This same bound is also a new upper bound for the chromatic number
of a graph in terms of the degrees of its vertices.

1. Introduction

The basic scheduling problem may be described as
follows. We are given n jobs {J;})_,, together with an
incompatibility matrix M = {m,;}, where m;; = zero or
1 depending on whether or not J; and J; can be carried
out on the same day. The problem is to find the mini-
mum number of days needed to carry out the » jobs.

By representing each job J; by a point 4; and joining
A; to A; by an undirected edge ¢;; if and only if m;; = 1,
the above problem is clearly seen to be equivalent to
finding a minimum colouring of the vertices of the graph
G which has vertex set V(G) = {4;}/—; and edge set
E(G) = {e;;}-

In the notation of Ore (1962), the minimum number
of days needed is exactly the chromatic number k(G), of
the graph G. The problem of determining this chromatic
number for an arbitrary graph G is a well known
unsolved problem. In theory a solution can always be
obtained by trial and error or by integer programming
methods. However, in practical instances such as arise
in large scale scheduling problems the labour involved
often renders the method of solution inefficient, and as
a compromise a solution is sought which blends the
advantages of simplicity and reasonable accuracy.

2. Statement of results

The degree of a vertex A4; of the graph G is the number
of edges having A4; as an endpoint, and we will denote
it by d;. Without loss of generality we assume that

> d,. (M

It is easy to show (Ore 1962, Chapter 14) that if k(G)
denotes the chromatic number of G then

KG) < d +1 2

and provided G contains no d;-simplices, then from (2)
we know

di>dy> ...

k(G) < d,. A3)
The purpose of this paper is to point out that G may
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always be coloured in at most «(G) colours where

k(G) < «(G) < max min [di + l], %)

i i

Furthermore, for those instances where this number is
deemed sufficiently economical, a colouring employing
no more than this number of colours may be obtained
by a very simple algorithm described below.

The algorithm. Let V(G) denote the vertex set of G.
Let T, be a subset of V(G) defined recursively as follows:

A1€T1.

If {4 "k}7‘n=IET" where i; = 1 and
<y <...<ip,

then ;€T if and only if

J>ip
and also 4; is not adjacent to any member of {Aik};" -1

Clearly 7T, is a finite, non-null subset of W(G).

Similarly we define 7, to be a subset of V(G) — T;
constructed recursively by:
If i is the least integer for which 4; ¢ T, then 4; € T,.
If{Ajk}11:=1 € T2 Wherejl <]2 <... <]p then Al € T2
if and only if

1>jp
and A, is not linked in G to any of the vertices {4 jk}z= 1

Notice that T, may be null (when G is completely dis-
connected). Similarly we define T3 to be a subset of
V(G) — (T, U T,) such that: If i is the least integer for
which 4; ¢ Ty U T, then A4; € T3, and then continuing
as before.

In this way we define a sequence {7;} of disjoint
subsets of W(G) such that V(G) = G T; and there
exists a finite integer «(G) such that !

T,=¢ r>«G).

From the nature of the construction no two vertices in
a given set T; are adjacent in G and hence by assigning
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to each vertex in T; the colour C; a colouring of G is
achieved in «(G) colours.

Proof of (4). By construction every vertex in
V(G) — T, is adjacent in G to some vertex of 7. A
standard inductive argument shows that every vertex in

V(G) — U T;is adjacent to at least one vertex of each
i=1

j=
of the sets {T;}i~;.
It follows that

Ak¢ U T}—>dk>m
Jj=1

and so
di+1
A;e U T, (5)
j=1
On the other hand by the nature of the algorithm
A;eU T, (6)
j=1
Combining (5) and (6) we get
(i)
A4;,e U T,
j=1

where
$(i) = min (i, d; + 1).
Defining 8(G) = max ¢(i), we see that

Tsg+n = ¢
and thus «(G) < 8(G) which proves the required result.

3. Examples

Clearly the result (4) is usually a big improvement on
(2) and for many graphs (scheduling problems) is quite
a good upper bound which has the added advantage of
being easily computed. It is important to notice,
however, that the difference

max min (d‘ + 1) — k(G)

1

can be arbitrarily large for certain graphs.
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G a bipartite graph

G is said to be bipartite if the vertex set V(G) can be
partitioned into two non-null disjoint sets X, Y and the
only edges of G join vertices of X to those of Y. The
chromatic number of a bipartite graph is always
exactly 2. In such cases, however, empirical evidence
suggests that the actual number of colours used by the
algorithm in the colouring is also very small.

The examination timetabling problem

As another example consider the problem studied by
Cole (1964) of arranging a timetable for 34 examination
papers. From the data given in Cole’s Table 2 the
upper bound given by (3) is 20, but the sequence
{$:}34 is seen to be

1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 14, 12, . . .

This shows before even constructing a schedule that
there exists a solution using at most 14 periods.

Conclusion

Apart from the improved upper bound for the chro-
matic number the algorithm presented above seems most
useful for scheduling problems where there is a certain
amount of “slack™. It does not answer the much more
difficult problem, which usually occurs in practice, when
in addition to an incompatibility matrix we are given a
preassignment matrix P = {p;;} which specifies that
certain jobs must be carried out on certain days ordained
beforehand.

However, it would still be very informative to have
some knowledge of the average value of the difference
«(G) — k(G) over all graphs on n vertices. Because of
the time needed to calculate k(G) exactly, however, this
seems almost insoluble theoretically or practically.
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