some fact about APN over GF(2)
This page reports numerical facts related on APN mappings, started on Automn 2016.
Let m be a positive integer. A mapping from
GF(2)^m into GF(2)^m is said to be APN when,
f= 0 1 2 6 4 27 12 11 8 30 23 18 24 10 22 25 16 3 29 21 15 9 5 28 17 26 20 14 13 7 19 31 cycle: 1 1 1 5 1 4 4 1 4 4 4 1 1 spectrum: 10: 1 [-12] 3 [-8] 6 [-4] 6 [0] 9 [4] 7 [8] 11: 5 [-8] 5 [-4] 6 [0] 10 [4] 5 [8] 1 [12] 10: 3 [-8] 9 [-4] 6 [0] 6 [4] 7 [8] 1 [12] 1: 31 [0] 1 [32] poly : a^18 X^1 + a^19 X^2 + a^27 X^3 + a^13 X^4 + a^11 X^5 + a^11 X^6 + a^20 X^7 + a^25 X^8 + a^29 X^9 + a^17 X^11 + a^13 X^12 + a^22 X^13 + a^3 X^14 + a^8 X^15 + a^6 X^16 + a^27 X^17 + a^28 X^18 + a^5 X^19 + a^12 X^20 + a^22 X^21 + a^20 X^22 + a^1 X^23 + a^25 X^24 + a^11 X^25 + a^25 X^26 + a^6 X^27 + X^28 + a^10 X^29 + a^6 X^30 degree : 0 [0] 0 [1] 0 [2] 31 [3] 0 [4]It has an automorphism of order 5 (x,y)->(xA,yA) where A:=compagnon( 1+T+T^2+T^3+T^4).
f= 0 15 60 44 14 18 49 10 56 41 55 1 58 3 40 20 30 45 37 13 34 54 4 62 22 57 12 23 33 8 47 29 7 17 53 24 21 51 52 63 9 27 38 25 16 19 6 36 39 2 26 46 48 50 35 43 5 31 32 42 61 59 11 28 cycle: 1 63 spectrum: 7: 6 [-16] 48 [0] 10 [16] 7: 3 [-16] 18 [-8] 12 [0] 30 [8] 1 [16] 21: 2 [-16] 20 [-8] 12 [0] 28 [8] 2 [16] 21: 1 [-16] 22 [-8] 12 [0] 26 [8] 3 [16] 7: 24 [-8] 12 [0] 24 [8] 4 [16] 1: 63 [0] 1 [64] poly : a^39 X^1 + a^43 X^2 + a^57 X^3 + a^48 X^4 + a^12 X^5 + a^26 X^6 + a^5 X^7 + a^13 X^8 + a^28 X^9 + a^59 X^10 + a^19 X^11 + a^17 X^12 + a^35 X^13 + a^36 X^14 + a^37 X^15 + a^3 X^16 + a^18 X^17 + a^61 X^18 + a^47 X^19 + a^33 X^20 + a^29 X^21 + X^22 + a^16 X^23 + a^23 X^24 + a^43 X^25 + a^10 X^26 + a^12 X^28 + a^2 X^29 + a^23 X^30 + a^48 X^32 + a^23 X^33 + a^13 X^34 + a^16 X^35 + a^23 X^36 + a^33 X^37 + a^51 X^38 + a^61 X^39 + a^33 X^40 + a^51 X^41 + a^4 X^42 + a^3 X^43 + a^6 X^44 + a^26 X^45 + a^27 X^46 + a^39 X^48 + a^35 X^49 + a^19 X^50 + a^45 X^51 + a^25 X^52 + a^47 X^53 + a^34 X^54 + a^31 X^56 + a^31 X^57 + a^52 X^58 + a^51 X^60 degree : 0 [0] 7 [1] 0 [2] 0 [3] 56 [4] 0 [5]It has an automorphism of order 7 (x,y)->(xA,yA^2) where A:=compagnon( 1+T+T^2+T^3+T^4+T^5+T^6).
f= 0 11 30 37 47 52 57 18 59 9 12 1 10 32 60 33 42 21 7 31 41 17 24 23 22 56 26 28 27 58 2 19 13 15 51 35 48 3 39 38 55 20 16 46 44 54 43 4 36 50 49 34 5 53 45 40 25 6 29 8 14 63 62 61 poly : a^44 X^1 + a^43 X^2 + a^60 X^3 + a^50 X^4 + a^59 X^5 + a^37 X^7 + X^8 + a^10 X^9 + a^48 X^10 + a^4 X^11 + a^36 X^12 + a^24 X^13 + a^12 X^14 + a^3 X^15 + a^28 X^16 + a^55 X^17 + a^40 X^18 + a^27 X^19 + a^39 X^20 + a^54 X^21 + a^29 X^22 + a^8 X^23 + a^35 X^24 + a^50 X^25+ a^23 X^26 + a^35 X^27 + a^56 X^28 + a^6 X^29 + a^56 X^32 + a^23 X^33 + a^41 X^34 + a^48 X^35 + a^49 X^36 + a^50 X^37 + a^38 X^38 + a^56 X^39 + a^54 X^40 + a^35 X^41 + a^6 X^42 + X^43 + a^26 X^44 + a^16 X^45 + a^13 X^48 + a^38 X^49 + a^7 X^50 + a^1 X^51 + a^58 X^52 + a^7 X^53 + a^6 X^56 + a^12 X^57where a is a root of the primitive polynomial T^6 + T^3 + T^1 + T^0.