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Abstract

Langevin and Leander [1] computed the exact number of Boolean bent functions
in n = 8 variables, which is ≈ 2106. In [1, 2], it was estimated that the number
of bent functions equivalent to Maiorana-McFarlandM and Partial Spread PS
classes in dimension eight (up to addition of affine terms) is at most ≈ 272 and
≈ 276, respectively. While the classification of the PS class in the case n = 8
was achieved by Langevin and Hou [2], a similar result for theM class has been
still missing. In this paper, we close this gap by providing the classification of
Maiorana-McFarland bent functions in dimension eight. Based on this result,
we provide the exact number of bent functions equivalent to the M class in
eight variables (up to addition of affine terms), and discuss some theoretical
questions related to the classification of Maiorana-McFarland bent functions on
Fm
2 × Fm

2 .

Keywords: Bent function, Maiorana-McFarland class, Equivalence, General
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1 Preliminaries

Let Fn2 be the vector space of dimension n over F2 = {0, 1}. A mapping f : Fn2 → F2

is called a Boolean function. The set of all Boolean functions in n variables is denoted
by Bn. Every Boolean function has a unique multivariate representation, called the
algebraic normal form (ANF) :

f (x1, x2, . . . , xn) = f(x) =
∑

S⊆{1,2,...,n}

aSXS , aS ∈ F2, XS =
∏
s∈S

xs.

The degree of f is the maximal cardinality of S with aS = 1 in its ANF. The
valuation of f 6= 0, denoted by val(f), is the minimal cardinality of S for which
aS = 1. Conventionally, val(0) is ∞. We denote by B(s, t, n) = {f ∈ Bn : val(f) ≥
s and deg(f) ≤ t} the space of Boolean functions of valuation greater than or equal
to s and of degree less than or equal to t. The space B(0, t, n) is identified with the
Reed-Muller code RM(t, n).

For a ∈ Fn2 , the Walsh transform χ̂f : Fn2 → Z of a Boolean function f ∈ Bn
is defined by χ̂f (a) =

∑
x∈Fn2

(−1)f(x)+〈a,x〉n , where 〈a, x〉n = a1x1 + · · · + anxn is
a scalar product on Fn2 . We define the Walsh spectrum of f ∈ Bn as the multiset
WS(f) = {∗ |χ̂f (a)| : a ∈ Fn2 ∗}. We say that two Boolean functions f, f ′ ∈ Bn
are extended-affine equivalent (EA-equivalent), if f ′(x) = f(A(x)) + a(x) holds for
all x ∈ Fn2 , where A ∈ AGL(n, 2) and a is an affine Boolean function on Fn2 , i.e.,
deg(a) ≤ 1.

Definition 1. Let n = 2m be even. A Boolean function f ∈ Bn is called bent if its
Walsh transform satisfies χ̂f (a) = ±2m, for all a ∈ Fn2 .



The Maiorana-McFarland class [3] of Boolean bent functions on Fm2 × Fm2 is the
set of bent functions of the form

M = {fπ,g(x, y) = 〈x, π(y)〉m + g(y) : π is a permutation of Fm2 , g ∈ Bm}. (1)

The main aim of this paper is to classify the members of the M class for the case
of n = 2m = 8 variables. As we shall see later, this question is closely related to
the classification of permutations of Fm2 and, consequently, to the representatives of
(AGL(m, 2),AGL(m, 2))-double cosets in permutation group S(Fm2 ) of Fm2 , see [4].

2 Methodology

For n = 2m ≤ 6, the members of M can be classified directly, since its cardinality
|M| = (2m)! · 22m is relatively small and checking equivalence of Boolean functions
in these dimensions is very fast. However, already for m = 4, the number of permu-
tations of Fm2 becomes already too large for such a naive approach. As we explain
further, to classify the members ofM, it is enough to look at very special Maiorana-
McFarland bent functions fπ,g, where the selection of π and g is explained by the
double action of AGL(m, 2)×AGL(m, 2) on the group of permutations of Fm2 .

In the remaining part of the paper, we explain the main four steps of our approach
that helped to achieve the classification of the M class in n = 2m = 8 variables.
They include: I. Complexity reduction using the group theory, II. Preclassification,
III. Classification, IV. Description of the used invariants that uniquely label the
obtained equivalence classes. The supporting data for our findings can be found on
the web-page [5].

2.1 Complexity reduction using the group theory

We begin with some notation from group theory, which mainly follows the termi-
nology from [4]. Let

AGL(m, 2) =

{[
A b

1

]
: A ∈ GL(m, 2), b ∈ Fm2

}
be the general affine group. The action of AGL(m, 2) on Fm2 is given by[

A b
1

]
(x) = Ax+ b for x ∈ Fm2 .

Let S (Fm2 ) be the group of all permutations of Fm2 . The product of AGL(m, 2)
by its opposite AGL(m, 2)op acts naturally on S (Fm2 ) by composition. The action
of (L,R) ∈ AGL(m, 2) × AGL(m, 2)op on σ ∈ S (Fm2 ), is L ◦ σ ◦ R. The orbits of
this action are precisely the (AGL(m, 2),AGL(m, 2))-double cosets in S (Fm2 ). The
number of (AGL(m, 2),AGL(m, 2))-double cosets in S (Fm2 ) is denoted by N(m, 2).
This value can be computed with the Burnside lemma, for details, we refer to [4].

A pair (L,R) ∈ AGL(m, 2) × AGL(m, 2)op stabilizes a permutation π ∈ S (Fm2 )
if and only if L ◦ π ◦R = π. In this context, we define :

stab(π) := {R ∈ AGL(m, 2) | π ◦R ◦ π−1 ∈ AGL(m, 2)}.

If (L,R) stabilizes π then R ∈ stab(π). Conversely, for each R ∈ stab(π) there exists
one and only one L ∈ AGL(m, 2) such that (L,R) stabilizes π. With this definition,
in order to determine stab(π), one enumerates R ∈ AGL(m, 2) s.t. π ◦ R ◦ π−1 ∈
S(Fm2 ) is affine. Note that the mapping φ on Fm2 is affine if and only if for all
(x, y, z, w) ∈ (Fm2 )4 with x+ y + z + w = 0 holds φ(x) + φ(y) + φ(z) + φ(w) = 0.
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For an arbitrary permutation π of Fm2 , and for an arbitrary Boolean function
g ∈ Bm, consider the action of (A,R) with A ∈ GL(m, 2) and R ∈ AGL(m, 2) on
the Maiorana-McFarland bent function fπ,g(x, y) = 〈x, π(y)〉m + g(y) on Fm2 × Fm2 ,
where π ∈ S(Fm2 ) and g ∈ Bm:

fπ,g(x, y) ◦ (A,R) =〈A(x), π(R(y))〉m + g(R(y))

=〈x,A∗ ◦ π ◦R(y)〉m + g(R(y)),
(2)

where A∗ is the adjoint of A. Note that we can also add to fπ,g(x, y) any linear
function 〈x, v〉m without changing the EA-class :

fπ,g(x, y) ≡ 〈x, L ◦ π ◦R(y)〉m + g(R(y)) = fπ′,g′(x, y), (3)

where π′ := L ◦ π ◦ R, g′ := g ◦ R, L is the composition of A∗ by the translation
x 7→ x + v, for v ∈ Fm2 . This computation indicates that in order to classify the
elements of M, it is enough to look at Maiorana-McFarland bent functions fπ′,g′ ,
where π′ runs through the representatives of the (AGL(m, 2),AGL(m, 2))-double
cosets in S (Fm2 ) and g′ runs through the orbit determined by the action of stab(π′)
on the set of Boolean functions B(2,m,m).

2.2 Preclassification

In this section, we briefly describe how to obtain the representatives of double cosets
and the orbits of their action the set of Boolean functions of valuation at least 2 in
4 variables.

Constructing the representatives of the (AGL(4, 2),AGL(4, 2))-double cosets
in S

(
F4
2

)
. Here, we follow the methodology of Hou developed in [4]. For m = 4, to

find representatives of (AGL(m, 2),AGL(m, 2))-double cosets in S(Fm2 ), it is enough
to find N(4, 2) = 302 pairwise inequivalent permutations. To do so, one can use
the fact that for σ, τ ∈ S

(
F4
2

)
, σ ∼ τ if and only if σρτ−1 ∈ AGL(4, 2) for some

ρ ∈ AGL(4, 2). With this approach, we obtained the representatives πi (where i
ranges from 1 to 302) of the (AGL(4, 2),AGL(4, 2))-double cosets in S

(
F4
2

)
; they

can be found in [5]. Alternative representatives (obtained with a different approach)
can be also found in [6].

Computing the action of stab(πi) on the space B(2, 4, 4) and construct-
ing the orbit representatives. For each permutation πi, we compute the ac-
tion of stab(πi) on the space B(2, 2, 4). The obtained orbit representatives g ∈
O(stab(πi), B(2, 2, 4)) are listed in the ANF format, see [5]. For m = 4, we were
able to reduce the number of functions to check for equivalence as described by the
following diagram.

(2m)! · (22m−m−1) −→
N(m,2)∑
i=1

|O(stab(πi), B(2, 2,m))|

1 371 091 344 150 528 000 −→ 417 914

2.3 Classification

We use the standard design-coding-theoretic approach for checking equivalence of
Boolean bent functions, see [7, Section 2.2]. Using the described methodology, we
classify the obtained 417 914 Maiorana-McFarland bent functions in the following
two steps:
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1. For a fixed permutation πi with 1 ≤ i ≤ 302, classify Maiorana-McFarland
bent functions fπi,g, where g ∈ O(stab(πi), B(2, 2, 4)). Such a splitting of all
the functions to check in 302 small collections helps the classification routine
to assign quickly the right “preclass”and not spend a lot of time on showing
that two functions are inequivalent. In this way, we were able to reduce the
considered collection to 335 “preclasses”.

2. For the obtained preclasses fπi,g and fπ′
i,g

′ , we are checking the mutual equiv-
alence with the same design-coding-theoretic approach. In total, out of 335
“preclasses” we obtained 325 equivalence classes.

2.4 Invariants

In order to guarantee the correctness of the obtained equivalence classes, it is always
important to find the set of invariants that uniquely label the obtained representa-
tives of equivalence classes. Even for the obtained 325 equivalence classes, this task
was not trivial to achieve: the dimension is large enough and the functions to be
distinguished apriori have a lot of similarities, since all of them belong to the same
algebraic classM. After trying most of the known invariants, we were able to show
that the following triple (J4(fπ,g),M(fπ,g),K(fπ,g)) uniquely labels the representa-
tives fπ,g of equivalence classes of Maiorana-McFarland bent functions. Here, the
invariants J4(·), M(·) and K(·) are defined as follows:

1. Jk(f) = {∗WS(f + g) : g is a quadratic homogeneous function of rank k ∗}.
This invariant is a generalization of the invariant Θ(f), considered in [7].

2. M(f) is a multiplicative version of J2: Given f of degree 4, we consider the
distribution of the absolute value of the Walsh spectra of gf modulo RM(5, 8),
where g ranges the set of quadratic homogeneous functions of rank 2.

3. K(f) is the dimension of the kernel of the map from RM(2, 8) into B(4, 6, 8)
that maps g 7→ gf mod RM(3, 8).

According to our computations, the invariant Jk(f) takes 313 different values on
325 equivalence classes of Maiorana-McFarland bent functions. The remaining 12
collisions were further uniquely labeled by M(f), K(f) and their dual. The proof
that Jk(f) is an invariant under EA-equivalence is similar to Θ(·) presented in [7],
M(f) is a multiplicative variant of J2(f) and K(f) is a variant of the multiplicative
invariant R2,4 that could be found in [8].

3 Main results

In this section, we summarize the results in this paper. We begin with our main
computational result:

Theorem 1. Let CM(2m, 2) denote the number of equivalence classes of Maiorana-
McFarland bent functions on Fm2 × Fm2 . Then, CM(8, 2) = 325.

Proof. This follows from the computations above presented in Section 2.

Based on this result, we derive the number of Maiorana-McFarland bent func-
tions in 8 variables, up to addition of affine terms.

Theorem 2. For m = 4, the number of bent functions equivalent to the M class
(up to addition of affine terms) is equal to

537 611 571 837 677 338 624 ≈ 268,86. (4)
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Proof. Since the representatives of equivalence classes are known, one can compute
the orders of stabilizers of the representatives and use them to compute the desired
number using the orbit-stabilizer theorem. For m = 4, we get the value

∑
fπ,g

|AGL(2m, 2)|
| stab(fπ,g)|

=
22m

∏2m−1
k=0

(
22m − 2k

)∑
fπ,g
| stab(fπ,g)|

=
1 369 104 324 918 194 995 200

12 130 107 857 920
,

which is exactly the one in (4).

Remark 1. 1. This result is in line with the upper bound on the number of bent
functions equivalent to the M class (up to addition of affine terms), which as esti-
mated in [1], is at most 272,38.
2. Using the same counting argument, we confirm the enumeration of bent func-
tions in dimension 6 that was obtained by Preneel in [11, Table 8.7] with a different
approach.

Finally, we note that equivalence of permutations π and φ implies the equivalence
of the corresponding Maiorana-McFarland bent functions fπ,0 and fφ,0:

Theorem 3. Let π, φ ∈ S(Fm2 ). If π ∼ φ, then Maiorana-McFarland bent functions
fπ,0 and fφ,0 on Fm2 × Fm2 are equivalent.

Proof. This fact follows from Eqs. (2) and (3).

4 Conclusion and open problems

In this paper, we classified and enumerated all Maiorana-McFarland bent func-
tions in eight variables. In the following table, we summarize the known values of
CM(2m, 2) and N(m, 2) for the small values of m. Note that the first row of this
table is taken from [9] and that the value of N(5, 2) given in [4] is wrong; the correct
value is given in [9]. The second row of the table below is composed from the values
obtained in [10] and this paper.

Table 1. The known values of CM(2m, 2) and N(m, 2), for m small

m 1 2 3 4 5

N(m, 2) 1 1 4 302 2 569 966 041 123 963 092

CM(2m, 2) 1 1 4 325 ≥ N(5, 2)?

Combining our theoretical results from Theorem 3 and computational results
given in Table 1, it is natural to conjecture:

Conjecture 1. If Maiorana-McFarland bent functions fπ,0 and fφ,0 on Fm2 × Fm2
are equivalent, then π ∼ φ.

Proving this conjecture is the first important step towards understanding when
two given Maiorana-McFarland bent functions are equivalent. Additionally, the
answer to the classification problem of “simple” Maiorana-McFarland bent functions
will provide a good lower bound on the number of inequivalent Maiorana-McFarland
bent functions.
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