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1. Introduction

At Finite Field conference FQ9 in Dublin, K. A. Browning, J. F. Dillon, M. T. McQuis-
tan, and A. J. Wolfe offered to us a very good news : the discovery of an apn permutation
in dimension six [3], we will refer to this as ”Dublin permutation”, or ccz-class of Dublin.
Since this announcement of their ”update”, numerous attempts have been made to find
a new permutation in even dimension, but the very bad news is that nobody found just
another one ! Thanks to the paper [5], we now have a list of 14 ccz-class of 6-bit apn
functions with cubic representative of degree less or equal to 3. The numerical classifi-
cation of cubic functions [7] and the exhaustive search [2] suggest that this list may be
exhaustive. However, the lack of theoretical results leaves open the possibility of unknown
sporadic classes, hidden within the complexity of the combinatorial of the problem. In
order to eventually uncovers a novelty in dimension 6, one must search among functions
of degree greater than or equal to 4, probably equal. In this talk, we address the ques-
tion of the existence of an apn function of degree 4 having a special structure based on
observations of the decomposition of the 14 known ccz-classes [4]. Specifically, 12 out of
the 14 of known ccz-class contain at least one ea-class in which all vectorial functions
have components whose fourth-order spectral moments take exactly two distinct values.
We present a procedure to classify 6 bits apn quartics sharing this regularity. To achieve
this, we introduce a new algorithm to test the existence of an APN extension of a given
(m,m − 2)-function. Our talk will also provide specific results on APN-functions based
on the classification of 6-bits Boolean functions. The technical details are developped in
the following sections.

2. Boolean and vectorial function

Let F2 be the finite field of order 2. Let m be a positive integer. We denote B(m)
the set of Boolean functions f : Fm

2 → F2. Every Boolean function has a unique algebraic
reduced representation:

(1) f(x1, x2, . . . , xm) = f(x) =
∑

S⊆{1,2,...,m}

aSXS , aS ∈ F2, XS =
∏
s∈S

xs.

The degree of f is the maximal cardinality of S with aS = 1 in the algebraic form.
In this paper, we conventionally fix the degree of the null function to zero. To classify
Boolean functions, one introduces two definitions of equivalency, for f, g ∈ B(m), f
and g are affine equivalent (equivalent) if there exist an affine permutation A of Fm

2

such that g(x) = (f ◦ A)(x) ; f and g are extended affine equivalent (ea-equivalent) if
there exist an affine permutation A of Fm

2 and an affine Boolean function ℓ such that
g(x) = (f ◦A)(x) + ℓ(x).The Walsh coefficient of f ∈ B(m) at a ∈ Fm

2 is

f̂(a) =
∑
x∈Fm

2

(−1)f(x)+a.x,

the set of Walsh coefficients is called the Walsh spectrum. Let q = 2m, the Walsh
coefficients satisfy Parseval’s identity :

(2)
∑
a∈Fm

2

f̂(a)
2
= q2

1
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The spectral moment of order r is the integer :

(3) κr(f) =
1

q2

∑
a∈Fm

2

f̂(a)
r
.

It is an ea-invariant, and we normalize the 4th-order spectral moment :

(4) κ(f) =
1

q
κ4(f) =

1

q3

∑
a∈Fm

2

f̂(a)
4

The multiset w(f) := {{|f̂(a)| | a ∈ Fm
2 }} of absolute value of Walsh coefficients of f , is an

invariant, we used to define our main ea-invariant J from the set Q of quadratic forms
of rank 2 : J(f) = {{w(f + g) | g ∈ Q}}. A bent function as a Boolean function f whose
Walsh transform has constant absolute value. Bent functions exist only for even m, and
that for a bent function, we have

(5) |f̂(a)| = √
q = 2m/2 ⇐⇒ κ(f) = 1

Two complementary notions are defined from the Walsh coefficients of a Boolean function
the linearity l (f) and the non-linearity nl (f) with their bound :

l (f) := max
a∈Fm

2

|f̂(a)| ≥ 2m/2 nl (f) := 2m−1 − 1

2
max
a∈Fm

2

|f̂(a)| ≤ 2m−1 − 2m/2−1

Bent functions have a maximal non-linearity and achieve the upper bound of non-
linearity 2m−1 − 2m/2−1. The auto-correlation of a Boolean function f is defined for
t ∈ Fm

2 by :

(6) f × f(t) =
∑

x+y=t

(−1)f(x)+f(y) =
1

q

∑
a∈Fm

2

f̂(a)
2
(−1)a.t

A vectorial (m,n)-function is a mapping from Fm
2 into Fn

2 , it is defined by n coordinate
Boolean functions fi = ei.F (x) such that F (x) =

(
f1(x), f2(x), . . . , fn(x)

)
with (ei)1≤i≤n

is the canonical basis of Fn
2 . For any b ∈ Fn

2 , the Boolean function x 7→ Fb(x) = b.F (x)
is a component of F , the space ⟨F ⟩ of the components is generated by the coordinates of
F . The degree of a vectorial function is the maximum among the degrees of its Boolean
components. Most concepts introduced earlier for Boolean functions can be extended to
vectorial functions. We define equivalency of vectorial functions, for F and G two (m,n)-
functions, F and G are affine equivalent (equivalent) if there exist an affine (m,m)-
permutation A, an affine (n, n)-permutation B such that G(x) = (B ◦ F ◦ A)(x) ; F
and G are extended affine equivalent (ea-equivalent) if there exist an affine (m,m)-
permutation A, an affine (n, n)-permutation B and an affine (m,n)-function C such that
G(x) = (B ◦ F ◦ A)(x) + C(x) ; F and G are ccz-equivalent if there exists an affine
permutation A on Fm

2 ×Fn
2 such that A(Γ(F )) = Γ(G) where Γ(F ) = {(x, F (x)) | x ∈ Fm

2 }
(resp. Γ(G)) is the graph of F (resp. G).

Lemma 1. The multiset J′(F ) = {{J(f) | f ∈ ⟨F ⟩}} is an ea-invariant.

The Walsh coefficient of a (m,n)-Function F at (a, b) ∈ Fm
2 × Fn

2 is Walsh coefficient
of its component Fb :

F̂ (a, b) = F̂b(a) =
∑
x∈Fm

2

(−1)Fb(x)+a.x,

the linearity and non-linearity of a (m,n)-function F are respectively the maximum of
linearity among its components and the minimum non-linearity among its components :

l (F ) := max
a∈Fm

2 ,b∈Fn
2 \{0}

|F̂b(a)| nl (F ) := 2m−1 − 1

2
max

a∈Fm
2 ,b∈Fn

2 \{0}
|F̂b(a)|

A (m,n)-function is bent if all its non-zero components are bent. Its exists iff m is even
and n ≤ m/2. Form = 2k and n > k, an (m,n)-function F is called (m,n)-mnbc function
see [1], if it has the maximum number of bent components 2n − 2n−k. We consider the
system of two equations and r variables in Fm

2 :
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(7) x1 + x2 + · · ·+ xr = 0, and F (x1) + F (x2) + · · ·+ F (xr) = 0.

We propose to denote by Nr(F ) the number of solutions, and Tr(F ) the number of
solutions where x1, x2, . . . , xr are not all distincts. Let us denote

(8) Qr(F ) :=
1

r!
(Nr(F )− Tr(F ))

It is well known that the number of solutions Nr(F ) of the above system reads in term
of moments of order r by of the components of F :

(9) Nr(F ) =
∑

f∈⟨F ⟩

κr(f).

When we observe the Boolean components space ⟨F ⟩ of a vectorial function F , we are
interested on the one hand in the set of their ea-classes CF := {ea-classes(f) | ∀f ∈
⟨F ⟩} and on the other hand in the set of all normalised 4th-order spectral moments
KF := {κ(f) | ∀f ∈ ⟨F ⟩}. For these two sets, we also study their cardinality and their
distribution of values. Note that ♯KF ≤ ♯CF . We are particularly interested in vectorial
functions such that κ(f) take few values. A vectorial function F has k levels of spectral
moments if the cardinality of KF is k.

Example 1. If m is odd then all the non zero components of the power function x3 in
F2m are ea-equivalents, ♯CF = 1, and thus ♯KF = 1.

3. apn and counting function

Let F a (m,n)-function. For u ̸= 0, v ∈ Fm
2 , we denote NF (u, v) the number of

solutions in Fm
2 of the equation F (x + u) + F (x) = v. Note that if x is a solution then

x+ u is also a solution. Thus, NF (u, v) is even.

(10) NF (u, v) =
1

2m+n

∑
a∈Fm

2 ,b∈Fn
2

F̂b(a)
2
(−1)a.u(−1)b.v =

1

2n

∑
b∈Fn

2

Fb × Fb(u)(−1)b.v.

The differential uniformity of a (m,n)-function F is ∆F := max
u∈Fm

2 \{0},v∈Fn
2

NF (u, v). A

(m,m)-function F is almost perfect non linear (apn ) iff it satisfies one of the following
properties :

(i) The differential uniformity of F is ∆F = 2.
(ii) For all 2-flat {x, y, z, t} ⊆ Fm

2 , F (x) + F (y) + F (z) + F (t) ̸= 0.
(iii) N4(F ) = T4(F ) = 3q2 − 2q. (iv)

∑
0 ̸=f∈⟨F ⟩

κ(f) = 2(q − 1)

Lemma 2. If F is apn in even dimension then KF ≥ 2.

Proof. If f is non zero component of F with ♯KF = 1, and (iv) implies κ(f) = 2. Parseval
and little Fermat’s Theorem give κ(f) ≡ 1 mod 3, implying m odd. □

Lemma 3. If F is apn in dimension m the number of trivial solutions are

T4(F ) = 3q2 − 2q, T6(F ) = q + 15q(q − 1) + 15q(q − 1)(q − 2).

The above Lemma can be used to give information on automorphism order.

#
degree 4th-spectral moment

2 3 4 1 1.75 2.5 4.0
1 63 42[1] 21[1]
2 7 56 56[1] 7[1]
5 1 62 30[2] 24[2] 9[3]
2 31 32 12[2] 32[3] 12[2] 7[2]
1 31 32 12[1] 32[2] 12[2] 7[2]
2 31 32 12[2] 32[2] 12[2] 7[2]

There are 2-spectral levels APN functions.
The ccz-class of Π is divided into 13 ea-
classes [4], 3 of which have 2 spectral levels,
see line 1 and 2. This table also gives the
distribution of the degrees and spectral lev-
els of the components, specifying the number
of ea-classes. For example, the line 2 there
is 2 ea-classes which one that contains the
Dillon’s permutation, 7 components are cu-
bics and 56 are quartics.
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Moreover, 56 components with spectral

moment 1.75 are in [1] ea-class, 7 components with spectral moment 4.0 are in [1] ea-class and

form a vector space of dimension 3. For an apn vectorial function F , we introduce the
counting function nu for a given u ∈ Fm

2 defined for v ∈ Fm
2 by

nu(v) =

{
1, if NF (u, v) = 2;

0, if NF (u, v) = 0.

This counting function is defined for each u ∈ Fm
2 and verify for b ∈ Fm

2 :

(11) ∀b ∈ Fm
2 \ {0}, n̂u(b) = −Fb × Fb(u) and n̂u(0) = 0.

If all counting functions nu are Boolean function of degree at most 1, the vectorial function
F is called crooked. We apply the relation 11 to obtain the following observations that
are mainly consequences of known classification of 6-bits Boolean functions.

Scolie 1. In dimension 6, an apn crooked function is quadratic.

Scolie 2. All the counting functions of apn function of degree 6 are quintic.

Scolie 3. In dimension 6, if F is a mnbc function then it is not apn .

4. Function with 2-spectral levels

We observe the existence of two spectral level function in each of the 14 known ccz-
classes in dimension 6, and we decided to search for other examples by extension process.
A vectorial apn function F is with 2-spectral levels if the normalized 4th-order spectral
moments of its components take 2 values α and β. In this case,

(12) αA+ βB = 2(q − 1), A+B = q − 1;

where A (resp. B) is the number of components f of F such that κ(f) = α (resp.
κ(f) = β). We suppose that α < β and we say F is a function of type (α, β). Using
the classification of Boolean functions, among 293 values of κ, we found 62 possible pairs
satisfying 12 , involving function of degree less or equal to 4 :

α A deg ♯ β B deg ♯
1.0 42 23. 4 4.0 21 234 86
1.0 60 23. 4 22.0 3 .3. 1
1.0 56 23. 4 10.0 7 .3. 1
1.0 49 23. 4 5.50 14 .34 29
1.0 21 23. 4 2.50 42 .34 216
1.0 57 23. 4 11.50 6 .34 5
1.0 35 23. 4 3.250 28 .34 191
1.0 15 23. 4 2.3125 48 .34 214
1.0 51 23. 4 6.250 12 ..4 13
1.0 47 23. 4 4.9375 16 ..4 37
1.0 39 23. 4 3.6250 24 ..4 67
1.0 7 23. 4 2.1250 56 ..4 49
1.0 55 23. 4 8.8750 8 ..4 2

α A deg ♯ β B deg ♯
1.750 56 ..4 8 4.0 7 234 86
1.750 42 ..4 8 2.50 21 .34 216
1.750 60 ..4 8 7.0 3 .34 3
1.750 51 ..4 8 3.0625 12 .34 321
1.750 35 ..4 8 2.3125 28 .34 214
1.750 59 ..4 8 5.6875 4 ..4 25
1.750 21 ..4 8 2.1250 42 ..4 49
1.750 49 ..4 8 2.8750 14 ..4 119
1.750 57 ..4 8 4.3750 6 ..4 34

1.9375 56 ..4 54 2.50 7 .34 216
1.9375 60 ..4 54 3.250 3 .34 191
1.9375 42 ..4 54 2.1250 21 ..4 49
1.9375 62 ..4 54 5.8750 1 ..4 19

If we restrict our attention to the case where the set of components such that κ(f) = α or
κ(f) = β forms a vector space, thus A or B is a power of 2 minus 1, we obtain 6 possible
pairs listed in the Table 1. The Table describes the structure of a potential vectorial
function of type (α, β). For example, the 4-th line corresponds to the pair (1.75, 4), for
which we have A = 56 and B = 7. The components corresponding to α = 1.75 (resp.
β = 4.0) must be chosen from 8 (resp. 86) classes of Boolean functions of degree 4 (resp.
2, 3 and 4). We remark that the permutation obtained in [3] is of type (1.75,4) and
corresponds to this line. The pair (1, 10) corresponding to the first line of the table,

Table 1. All the possible pairs.

α A degree classe β B degree classe

1.0000 (56) 23... 4 10.0000 ( 7) .3... 1
1.0000 (15) 23... 4 2.3125 (48) .34.. 214
1.0000 ( 7) 23... 4 2.1250 (56) ..4.. 49
1.7500 (56) ..4.. 8 4.0000 ( 7) 234.. 86
1.9375 (56) ..4.. 54 2.5000 ( 7) .34.. 216
1.9375 (62) ..4.. 54 5.8750 ( 1) ..4.. 19
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describes an apn and mnbc vectorial function of degree less than 3. It follows from the
[1] it does not exists. The second line describes a vector function with a bent-space of
dimension 4, that is impossible. Our objective is to found new vectorial functions of type
(α, β) in the Table 1. The Table covers the case of the Dublin permutation, and potentially
new ccz-apn classes because of the large number of possibility in term of classes. We
decided to restrict the area of exploration assuming degree 4 for the α-components and
degree 3 for the β-components.

5. Numerical investigation

An extension G of F is obtained by adding a some coordinate functions, in that case
⟨F ⟩ becomes a subspace of components space of G.

Lemma 4. If a (m,n)-function F has an apn extension then ∆F ≤ 2m−n+1.

The vectorial (m,m − 2)-function F has an apn extension , if and only if, for all
(x, y, z, t) ∈ QF the system quadratic equations :

(13) g(x) + g(y) + g(z) + g(t) ̸= 0 ⇔
(
g(x) + g(y) + g(z) + g(t)

)3
= 1.

is solvable in F4
2. We remark that

(
g(x) + g(y) + g(z) + g(t)

)3
equal to :

x3 + y3 + z3 + t3 + xy(x+ y) + xz(x+ z) + xt(x+ t) + yz(y + z) + yt(y + t) + zt(z + t).

so we can transform system (13) in an affine system SF N equations in q(q+1)/2 variables,
by introducing the q Boolean variables x3, and the q(q − 1)/2 variables xy(x+ y).

Lemma 5. If the affine system SF has no solution then F has no apn extension.

We say that an (m,m − 2)-vectorial function passes the extension test if it satisfies
conditions of Lemma 4 and Lemma 5. Even it is an hard task, it is possible to use
the following procedure to ”classify” all apn functions of type (α, β) that are quartic
extensions of a (6, 3)-vectorial cubic. Let E be a set of (m,n)-functions. We define Ext(E)
as the set of extensions (F, f) having (α, β) type that satisfy Lemma 4 and ”filtered” by
invariant J′. Starting from E0 := {h} where deg(h) = 4 and κ(f) = α, we contruct
E1 = Ext(E0), E2 = Ext(E1), and E3 = Ext(E2). We keep the (6, 4)-function passing the
extension test, and we terminate by a backtracking algorithm to identify apn extension,
and then 2-level apn functions.

Applying the procedure using the invariant of Lemma 1 for the pair (1.75,4), we remark
that only 4 of the 8 possible quartic representatives provide apn extensions. Moreover,
the apn functions obtained after the backtracking phase are not necessarily at 2 spectral
levels, but all those of type (1.75,4) are finally ccz-equivalent to Dublin permutation !
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