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Origine

The mathematical problems of the talk appeared in the 60’s when people
searched pairs of binary sequences with nice intercorrelation properties :
phone, radar etc. . .

correlation

Given two complex sequences s and s ′ on unit circle, of period n, the
intercorrelation at t ∈ Z is

s ′ × s(t) =
n∑

i=1

s ′i si+t

finding pairs of sequences of root of 1, preferably ternary or binary, with
small correlation, ideally 0, is important for applications.
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maximal sequence

By the works of people like Gold, Welch, Niho . . . We know it is possible
to construct interesting sequences using both the additive and the
multiplicative structures of a finite field.

L be a finite field of characteristic p and order q.

µ the canonical addidive character of L,

L 3 x 7→ ζTrL(x)
p , ζp = exp(2iπ/p).

γ a primtive root of L.

si := µ(γ i )

is (q − 1)-periodic, it is a maximal sequence.
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Fourier coefficient

Let s ′ an other m-sequence.

s ′i = µ(βi ) = µ(γsi ), (s, q − 1) = 1, β = γs .

s ′ × s(t) =

q−1∑
i=1

s ′i si+t

=

q−1∑
i=1

µ(γsi )µ̄(γ i+t)

= f̂ (a)− 1

where a = γt and f (x) = x s (power permutation), and

f̂ (a) =
∑
x∈L

µ
(
f (x)− ax

)
this Fourier coefficient is sometimes called a Weil sum.
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spectrum

Let f : L→ L be any mapping.

f̂ (a) ∈ Q(ζp) is a cyclotomic integer.

The distribution of the f̂ (a)′s is the spectrum of f .

We say f (or an exponent s) has a N-valued spectrum, if

N = ]
{

f̂ (a) | a ∈ L×
}

It is convenient to introduce

Det (f ) :=
∏

a∈L×

f̂ (a)
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Rationality

Theorem (Helleseth)

All the Fourier coefficients of x s are in Z iff s = 1 (mod p − 1).

Proof.

Let t be the inverse of s modulo p − 1. The automorphism σu defined by
σu(ζp) = ζu

p acts like

σu(f̂ (a)) =
∑
x∈L

µ(ux s − uax) =
∑
x∈L

µ(x s − u1−tax)

= f̂ (u1−ta)

whence by Fourier inversion

∀x ∈ L, f (x) = f (u1−tx)

∀y ∈ Fp, y = u1−ty
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main conjectures

The domain of sequences is full of open questions, problems and
conjectures concerning the spectra of power mappings. One of the main
conjectures appears in a paper of Sarwate and Pursley (1980).

Conjecture

Assuming p = 2. If f is a power permutation of L where [L : F2] is even

then supa∈L |f̂ (a)| ≥ 2
√

q.

There is also two conjectures by Helleseth (1976).
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Helleseth conjectures

Conjecture (HZ)

Let L be a field of cardinal q > 2. If f is a power permutation of L of
exponent s ≡ 1 mod (p − 1) then

∃a ∈ L×, f̂ (a) = 0.

Conjecture (HP)

If [L : Fp] is a power of 2. If f is a power permutation of L then f̂ takes
at least four values.
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Recent results

In characteristic 2,

HZ checked up to dimension 25, numerical project page of PL.

HP checked up to dimension 32, idem.

D. Katz proved HZ assuming tri-valued spectrum.

T. Feng proved HP assuming non trivial zero.

HP is proved (2012).

In odd characteristic,

three valued spectrum implies s = 1 (mod p − 1) (D. Katz)

D. Katz proved HP in characteristic 3.

HP checked for q ≤ 220, numerical project page of PL.

HP looks like ”almost” proved (2013).
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How to progress ?

It appears that the hard conjecture is

Conjecture (HZ)

Let L be a field of cardinal q > 2. If f is a power permutation of L of
exponent s ≡ 1 mod (p − 1) then

∃a ∈ L×, f̂ (a) = 0.

no progress since 40 years !
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Kloosterman sum

The case s = q − 2 is very interesting

f (x) = x s = x−1, f̂ (a) = 1 +
∑

x∈L×

µ(
1

x
− ax) = 1 + kloos (a)

We know HZ is true for the inversion :

in characteristic 2 (Lachaud-Wolfmann).

in characteristic 3 (Katz-Livné).

in characteristic p > 3, sdoma = −1 (mod p − 1).
(Kononen-Rinta-Aho-Vaanainen).

Problem

Find a more direct proof !

Problem

What about APN mappings ?
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Divisibility

Let f be a permutation of L

f̂ (0) =
∑
x∈L

µ(f (x)) =
∑
x∈L

µ(x) = 0

Definition

We say that HZ is true modulo ` if for any power permutation of
exponent s = 1 (mod p − 1),

∃a ∈ L×, f̂ (a) ≡ 0 (mod `).
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Divisibility by p

Proposition

HZ is true modulo p.

f̂ (a) =
q

q − 1
+

1

q − 1

∑
χ 6=1

τ(χ̄t)τ(χ)χ̄(a)

where st = 1 (mod q − 1).
The p-divisiblity is well understand by Stickelberger’s congruences on
Gauss sums :

τ(χ) =
∑
x∈L

χ(x)µ(x).

The minimal p-adic valuation of f̂ (a) (a 6= 0) is

1

p − 1
min
0<j

(
S(jt) + S(−j)

)
where S(j) is the p-ary weight of the residue ≡ j mod (q − 1).
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Divisibility by 3

Theorem

HZ is true modulo 3
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primary degree

Theorem

if [L : Fp] is a power of a prime ` then HZ is true modulo `.
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Key point

We consider the number Nn(u, v), of solutions in Ln of the system{
x1 + x2 + . . . + xn = u

f (x1) + f (x2) + . . . + f (xn) = v .
(1)

Using characters counting principle :

Lemma

The number Nn(u, v) of solutions in Ln of the system (??) verifies

q2Nn(u, v) = qn +
∑
α∈L×

∑
β∈L×

f̂β(α)nµ̄(αu + βv).

where fβ(x) = f (βx).
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sketch ` = 3

Suppose that Det (f ) 6≡ 0 mod 3 whence p 6= 3

q2N2(u, v) = q2 +
∑
α∈L×

∑
β∈L×

f̂β(α)2µ̄(αu + βv).

Assuming u, v ∈ L×.
Using little Fermat Theorem, it becomes

N2(u, v) ≡ 1 +
∑
α∈L×

∑
β∈L×

µ̄(αu + βv)

≡ 1 +
∑
α∈L×

µ̄(αu)×
∑
β∈L×

µ̄(βv)

≡ 1 + (−1)× (−1) ≡ 2 (mod 3).

∀u ∈ L×, ∀v ∈ L×, N2(u, v) 6≡ 0 (mod `). (2)
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sketch ` = 3

In order to obtain a contradiction, we exhibit a v ∈ L× such that
N2(1, v) = 0. This number is also the number of preimages of v by

d : x 7→ x s + (1− x)s

An element v 6= 1/2 in the image has at least two images

x , 1− x

The image of d contains at most q+1
2 elements and there exists a v such

that N2(1, v) = 0.
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conclusion

still a lot of work !

but up to now, divisibility by 3 (new) and divisibility by p (old) are the
only two global results in the direction of the Helleseth conjecture !
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