On Helleseth conjectures

Yves Aubry Philippe Langevin

Institut de Mathmatiques de Toulon université du sud Toulon Var.

4 September 2013

5th International Conference on Algebraic Informatics Porquerolles island

 \leftarrow

4 A F

 $=$ \rightarrow

 QQQ

Ε

The mathematical problems of the talk appeared in the 60's when people searched pairs of binary sequences with nice intercorrelation properties : phone, radar etc. . .

correlation

Given two complex sequences s and s' on unit circle, of period n , the intercorrelation at $t \in \mathbb{Z}$ is

$$
s'\times s(t)=\sum_{i=1}^n s_i'\overline{s_{i+t}}
$$

finding pairs of sequences of root of 1, preferably ternary or binary, with small correlation, ideally 0, is important for applications.

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ 《 경 ▶

 Ω

By the works of people like Gold, Welch, Niho . . . We know it is possible to construct interesting sequences using both the additive and the multiplicative structures of a finite field.

- \blacksquare L be a finite field of characteristic p and order q.
- μ the canonical addidive character of L,

$$
L \ni x \mapsto \zeta_p^{\mathrm{Tr}_L(x)}, \quad \zeta_p = \exp(2i\pi/p).
$$

 \blacksquare γ a primtive root of L.

$$
s_i := \mu(\gamma^i)
$$

is $(q - 1)$ -periodic, it is a *maximal sequence*.

メ 御 メ メ 君 メ メ 君 メ リ 君

 Ω

Fourier coefficient

Let s' an other m -sequence.

$$
s_i' = \mu(\beta^i) = \mu(\gamma^{si}), \qquad (s, q-1) = 1, \quad \beta = \gamma^s.
$$

$$
s' \times s(t) = \sum_{i=1}^{q-1} s'_i \overline{s_{i+t}}
$$

=
$$
\sum_{i=1}^{q-1} \mu(\gamma^{si}) \overline{\mu}(\gamma^{i+t})
$$

=
$$
\widehat{f}(a) - 1
$$

where $a = \gamma^t$ and $f(x) = x^s$ (power permutation), and

$$
\widehat{f}(a) = \sum_{x \in L} \mu\big(f(x) - ax\big)
$$

this Fourier coefficient is sometimes called a Weil sum.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... ⊙ Q Q ^

Let $f: L \to L$ be any mapping.

- $\widehat{f}(a) \in \mathbb{Q}(\zeta_p)$ is a cyclotomic integer.
- The distribution of the $\hat{f}(a)'s$ is the spectrum of f .
- We say f (or an exponent s) has a N-valued spectrum, if

$$
N=\sharp\{\widehat{f}(a)\mid a\in L^{\times}\}
$$

 \blacksquare It is convenient to introduce

$$
\mathrm{Det}\,(f):=\prod_{\mathsf{a}\in L^\times}\widehat{f}(\mathsf{a})
$$

メラト メミト メミト

 2990

G.

Rationality

Theorem (Helleseth)

All the Fourier coefficients of x^s are in $\mathbb Z$ iff $s = 1 \pmod{p-1}$.

Let t be the inverse of s modulo $p-1$. The automorphism σ_{μ} defined by $\sigma_u(\zeta_p)=\zeta_p^u$ acts like

$$
\sigma_u(\widehat{f}(a)) = \sum_{x \in L} \mu(ux^s - uax) = \sum_{x \in L} \mu(x^s - u^{1-t}ax)
$$

$$
= \widehat{f}(u^{1-t}a)
$$

whence by Fourier inversion

$$
\forall x \in L, \quad f(x) = f(u^{1-t}x)
$$

$$
\forall y \in \mathbb{F}_p, \quad y = u^{1-t}y
$$

Rationality

Theorem (Helleseth)

All the Fourier coefficients of x^s are in $\mathbb Z$ iff $s = 1 \pmod{p-1}$.

Proof.

Let t be the inverse of s modulo $p - 1$. The automorphism σ_u defined by $\sigma_u(\zeta_p)=\zeta_p^u$ acts like

$$
\sigma_u(\widehat{f}(a)) = \sum_{x \in L} \mu(ux^s - uax) = \sum_{x \in L} \mu(x^s - u^{1-t}ax)
$$

$$
= \widehat{f}(u^{1-t}a)
$$

whence by Fourier inversion

$$
\forall x \in L, \quad f(x) = f(u^{1-t}x)
$$

$$
\forall y \in \mathbb{F}_p, \quad y = u^{1-t}y
$$

The domain of sequences is full of open questions, problems and conjectures concerning the spectra of power mappings. One of the main conjectures appears in a paper of Sarwate and Pursley (1980).

Conjecture

Assuming $p = 2$. If f is a power permutation of L where $[L : \mathbb{F}_2]$ is even then $\sup_{a \in L} |\widehat{f}(a)| \geq 2\sqrt{q}$.

There is also two conjectures by Helleseth (1976).

Conjecture (HZ)

Let L be a field of cardinal $q > 2$. If f is a power permutation of L of exponent $s \equiv 1 \mod (p-1)$ then

$$
\exists a\in L^{\times},\quad \widehat{f}(a)=0.
$$

Conjecture (HP)

If $[L: \mathbb{F}_p]$ is a power of 2. If f is a power permutation of L then \hat{f} takes at least four values.

イロト イ押 トイヨ トイヨ トーヨ

 Ω

In characteristic 2,

- HZ checked up to dimension 25, numerical project page of PL.
- HP checked up to dimension 32, idem.
- D. Katz proved HZ assuming tri-valued spectrum.
- T. Feng proved HP assuming non trivial zero.
- \blacksquare HP is proved (2012).

In odd characteristic,

- **■** three valued spectrum implies $s = 1$ (mod $p 1$) (D. Katz)
- D. Katz proved HP in characteristic 3.
- HP checked for $q \leq 2^{20}$, numerical project page of PL.
- HP looks like "almost" proved (2013).

It appears that the hard conjecture is

Conjecture (HZ)

Let L be a field of cardinal $q > 2$. If f is a power permutation of L of exponent $s \equiv 1 \mod (p-1)$ then

$$
\exists a\in L^{\times},\quad \widehat{f}(a)=0.
$$

no progress since 40 years !

 QQ

G.

K 何 ▶ 【 ヨ ▶ 【 ヨ ▶ 】

 -111

Kloosterman sum

The case $s = q - 2$ is very interesting

$$
f(x) = x^s = x^{-1}
$$
, $\hat{f}(a) = 1 + \sum_{x \in L^\times} \mu(\frac{1}{x} - ax) = 1 + \text{kloos}(a)$

We know HZ is true for the inversion :

- in characteristic 2 (Lachaud-Wolfmann).
- \blacksquare in characteristic 3 (Katz-Livné).
- \blacksquare in characteristic $p > 3$, sdoma = -1 (mod $p 1$). (Kononen-Rinta-Aho-Vaanainen).

Problem

Find a more direct proof !

Problem

What about APN mappings ?

Let f be a permutation of L

$$
\widehat{f}(0) = \sum_{x \in L} \mu(f(x)) = \sum_{x \in L} \mu(x) = 0
$$

Definition

We say that HZ is true modulo ℓ if for any power permutation of exponent $s = 1 \pmod{p-1}$,

$$
\exists a \in L^{\times}, \quad \widehat{f}(a) \equiv 0 \pmod{\ell}.
$$

イロト イ押 トイヨ トイヨ トー

 $E = \Omega Q$

Divisibility by p

Proposition

HZ is true modulo p.

$$
\widehat{f}(a) = \frac{q}{q-1} + \frac{1}{q-1} \sum_{\chi \neq 1} \tau(\bar{\chi}^t) \tau(\chi) \bar{\chi}(a)
$$

where $st = 1 \pmod{q-1}$.

The p-divisiblity is well understand by Stickelberger's congruences on Gauss sums :

$$
\tau(\chi) = \sum_{x \in L} \chi(x) \mu(x).
$$

The minimal *p*-adic valuation of $\hat{f}(a)$ ($a \ne 0$) is

$$
\frac{1}{p-1}\min_{0
$$

where $S(j)$ is the *p*-ary weight of the residue $\equiv j \mod (q-1)$.

Theorem

HZ is true modulo 3

Yves Aubry, Philippe Langevin **[On Helleseth conjectures](#page-0-0)**

メロメ メ御 メメ きょくきょう

 $E = \Omega Q$

Theorem

if $[L : \mathbb{F}_p]$ is a power of a prime ℓ then HZ is true modulo ℓ .

メロメ メ都 メメ きょくきょう

 $E = \Omega Q$

We consider the number $N_n(u,v)$, of solutions in L^n of the system

$$
\begin{array}{ccccccccc}\nx_1 & + & x_2 & + & \dots & + & x_n & = u \\
f(x_1) & + & f(x_2) & + & \dots & + & f(x_n) & = v.\n\end{array} (1)
$$

Using characters counting principle :

Lemma

The number $N_n(u, v)$ of solutions in L^n of the system ([??](#page-16-0)) verifies

$$
q^2N_n(u,v)=q^n+\sum_{\alpha\in L^{\times}}\sum_{\beta\in L^{\times}}\widehat{f}_{\beta}(\alpha)^n\bar{\mu}(\alpha u+\beta v).
$$

where $f_{\beta}(x) = f(\beta x)$.

 \int

K ロ > K 何 > K 君 > K 君 > 「君」 の Q Q

sketch $\ell = 3$

Suppose that $Det(f) \not\equiv 0 \mod 3$ whence $p \neq 3$

$$
q^2N_2(u,v)=q^2+\sum_{\alpha\in L^\times}\sum_{\beta\in L^\times}\widehat{f}_\beta(\alpha)^2\bar{\mu}(\alpha u+\beta v).
$$

Assuming $u, v \in L^{\times}$. Using little Fermat Theorem, it becomes

$$
N_2(u, v) \equiv 1 + \sum_{\alpha \in L^\times} \sum_{\beta \in L^\times} \bar{\mu}(\alpha u + \beta v)
$$

$$
\equiv 1 + \sum_{\alpha \in L^\times} \bar{\mu}(\alpha u) \times \sum_{\beta \in L^\times} \bar{\mu}(\beta v)
$$

$$
\equiv 1 + (-1) \times (-1) \equiv 2 \pmod{3}.
$$

 $\forall u \in L^{\times}, \quad \forall v \in L^{\times}, \qquad N_2(u, v) \not\equiv 0 \pmod{\ell}.$ (2)

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ │ ヨ │ めぬ⊙

In order to obtain a contradiction, we exhibit a $v \in L^\times$ such that $N_2(1, v) = 0$. This number is also the number of preimages of v by

$$
d: x \mapsto x^s + (1-x)^s
$$

An element $v \neq 1/2$ in the image has at least two images

$$
x, 1-x
$$

The image of d contains at most $\frac{q+1}{2}$ elements and there exists a v such that $N_2(1, v) = 0$.

KED KARD KED KED E VOQO

still a lot of work !

but up to now, divisibility by 3 (new) and divisibility by p (old) are the only two global results in the direction of the Helleseth conjecture !

 2990

G.

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{B}$

 -111