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Fourier coefficient

I m positive integer

I L the finite field order q := 2m

I TrL the absolute trace of L

I µL the canonical character of L

µL(x) = (−1)TrL(x)

The Fourier coefficient of f ∈ L[X ], at a ∈ L is

f̂ (a) =
∑
x∈L

µL(f (x) + ax)



Definitions

I The spectrum of f

spec (f ) = {f̂ (a) | a ∈ L}

I The valuation

val (f ) = ν, ∀a ∈ L, 2ν | f̂ (a)

but there exists a such f̂ (a) is not divisible by 21+ν



Power Function

It corresponds to the monomial case where

f (x) = xd

In this talk, we assume that d is invertible modulo q − 1.
It is easy to prove that

spec (d) = spec (2d) and spec (d) = spec (d−1)

The exponents d and d ′ are equivalent :

∃k, d ′ = 2kd , or d ′ = 2kd−1



AB-exponent

Let f (x) = xd , applying the Sidelnikov’s bound

sup
a∈L

|f̂ (a)| ≥
√

2q

By definition, an almost bent exponent satisfies

sup
a∈L

|f̂ (a)| =
√

2q

In that case, m is odd, and the spectrum is three-valued:

−2
m+1

2 , 0, +2
m+1

2

In particular, the valuation of AB-exponents is m+1
2



From now and on, we assume that m is odd.

In connection to the Voloch’s talk :

d is AB ⇐⇒ d is APN and val (d) =
m + 1

2



Gold and Kasami exponents

Let k > 0 be an integer,

d = 2k + 1 (Gold) d = 22k − 2k + 1 (Kasami)

spec (d) = {−2
m+r

2 , 0, +2
m+r

2 }

where r = (k,m).

I There are ϕ(m)/2 classes of AB-exponents of Gold type.

I There are ϕ(m)/2 classes of AB-exponents of Kasami type.

I Remark that
24 − 22 + 1 = 22 + 1

for m > 9, this is the only class which is both Gold and
Kasami.



Welch and Niho exponents

On a basis of numerical experiments ( m ≤ 17 ), Niho conjectured
(1972) that the following exponents are almost bent :

d = 2
m−1

2 + 3 (Welch)

and
d = 22r + 2r − 1. (Niho)

where 4r ≡ −1 (mod m).

I This conjecture of Niho has been proved recently by
Dobbertin, Canteaut, Charpin, Xiang, and Hollmann (2000).



Dobbertin conjecture

type s condition nb. classes

Gold 2r + 1 (r ,m) = 1) 1
2ϕ(m)

Kasami 22r − 2r + 1 (r ,m) = 1) 1
2ϕ(m)

Welch 2(m−1)/2 + 3 1

Niho 22r + 2r − 1 4r ≡ −1 mod m 1

Table: Known AB-exponents m odd.

Up to equivalence, if m > 9 then the number of AB-exponents is
equal to ϕ(m) + 1.



Kasami-Welch exponent

Using quadratic form theory, one can easely prove that the Fourier
coefficients of the exponent

d =
2tk + 1

2k + 1
(Kasami-Welch)

takes values in

0, ±2
m+e

2 , ±2
m+3e

2 , ±2
m+5e

2 , . . .

where e = (m, k).

I The case t = 3 corresponds to the Kasami exponent. In this
case the spectrum is actually 3-valued.

I In the case t = 5, Niho proved the spectrum is at most
5-valued. In fact the spectrum is 5-valued (Kasami). A
simpler proof was given by Bracken (2004), generalizing a
proof of the t = 3 case by Dobbertin (1999).



Niho conjecture

On the basis of numerical experiences, Niho (page 72) proposes
the following conjectures on Kasami-Welch exponents :

conjecture cond. m spectrum

conj. 4-2 e > 1 3-valued 0, ±2
m+e

2

conj. 4-3 e = 1 not prime 5-valued

conj. 4-4 e = 1 prime 5-valued 0, ±2
m+1

2 , ±2
m+3

2



A counter-example

Take m = 25, k = 3, t = 19 !!!

Fourier Coeff. multiplicity

+215 1025
+214 337225
+213 7031500

0 18815956
−213 7031500
−214 337225
−215 1

This is a consequence of a joint work with McGuire and Leander.



Checking conjectures

I In december 2006, we computed the spectrum of all power
functions, up to the dimension 25 and we did not find any
counter-example to the main conjectures about power
functions.

http://langevin.univ-tln.fr/project/spectrum

I Hans Dobbertin knew its conjecture true up to dimension 27,
and he was curious to know the status of his claim for higher
dimension.

The purpose of this talk is to check Dobbertin’s conjecture
up to the dimension 33.



Link with Gauss sum

For all x ∈ L×,

µL(x) =
1

q − 1

∑
χ∈cL×

GL(χ)χ̄(x)

where
GL(χ) =

∑
x∈L×

χ(x)µ(x)

is a Gauss sum.
The Fourier coefficients of the power function f (x) = xd .

f̂ (a) =
∑
x∈L

µL(x
d + ax)

=
q

q − 1
+

1

q − 1

∑
1 6=χ∈cL×

GL(χ)GL(χ̄
d)χd(a)



Congruences of Stickelberger

By mean of a Teichmüller character ω:

f̂ (a) ≡ −
q−2∑
j=1

GL(ω
j)GL(ω̄

dj)ωdj(a) mod q

By Stickelberger, for any positive integer j

GL(ω̄
j , µL) ≡ 2wt (j) mod 2wt (j)+1

where wt (j) is the sum of the bits of the residue j . We get

val (d) ≥ νd = min
1≤j≤q−2

wt (−j) + wt (jd)

We introduce the J-set of d

J = {j | wt (−j) + wt (jd) = νd},



Valuation of an exponent

Collecting the terms of valuation νd , we obtain the congruence

f̂ (a) ≡ 2νd
∑
j∈J

ωjd(a) (mod 2νd+1)

since d is invertible, all the ωjd ’s are distincts, thus:

val (d) = νd = min
1≤j≤q−1

wt (j) + wt (−jd)

For example,

Proposition

An exponent d is AB iff ν = m+1
2 and a 7→

∑
j∈J adj is balanced.



Valuation distribution



Exponent with high valuation

ν nb. of s

2 1
3 12
4 155
5 1549
6 11396
7 68348
8 260754
9 287221

10 18228
11 249
12 8

valuation of AB-exponent 13 79
15 3
25 1



Good exponents

Our strategy to check Dobbertin’s conjecture consists in
enumerating the good exponents i.e.

val (d) ≥ m + 1

2

I It is a small set containing the AB-exponents

I We compute the Fourier spectrums of good exponents to
check which are AB.

I The running time to compute a Fourier transform in
dimension 25 is approximatively 6 secondes.



Key idea for sieving

An exponent of the form

d =
−r

s
, wt (r) + wt (s) ≤ m − 1

2
,

is not almost bent.

Proof.
For a such d , we have

wt (s) + wt (−sd) = wt (s) + wt (r) <
m + 1

2
.

Thus,

val (d) = νd <
m + 1

2



Sieving Algorithm

Generate all the pairs (r , s) with

wt (s) ≤ wt (r), wt (s) + wt (r) ≤ m − 1

2
.

and mark d = −r
s as a bad exponent.

I All exponents which are not marked have valuation greater
then m−1

2 .

I All exponents which are not marked are good candidates for
AB-exponents. It is a small size.

I The work factor of sieving is about 21.2m.



Number of candidates

There where only a very few exponents with valuation greater or
equal (m + 1)/2 that are not Gold, Kasami, Niho, Welch :

I 69 for dimension 27.

I 80 for dimension 29.

I 93 for dimension 31.

I 141 for dimension 33.

Now, the compute of the spectra of these exponents is feasible.
Note that, for m = 33, we use the transitivity of the AB-property.



Numerical results

This is what we get after approximately one week of computation:

I Dobbertin’s conjecture is correct up to n ≤ 33.

I Nearly all the invertible d of valuation greater or equal to m+1
2

are Kasami-Welch exponents.

I Up to dimension 33 all the exponents of valuation

(m + 1)/2

are Niho, Welch, Gold or Kasami-Welch except three
exceptions.



Exceptions of valuation m+1
2

m d bits equiv

27 8065 000000000000001111110000001 8321 / 3
12287 000000000000010111111111111 12289

10324441 000100111011000100111011001 13/3
29 24575 00000000000000101111111111111 24577

32513 00000000000000111111100000001 33025 / 3
41298235 00010011101100010100100111011 13 / 3

31 32513 0000000000000000111111100000001 33025 / 3
49151 0000000000000001011111111111111 49153

82595525 0000100111011000100111011000101 13 / 3
33 98303 000000000000000010111111111111111 98305

130561 000000000000000011111111000000001 131585 / 3
660764203 000100111011000100111011000101011 13 / 3



Conjecture

Outside Gold, Niho, Welch, Kasami-Welch, there are exactely three
exponents of valuation m+1

2 with valuation (m + 1)/2 :

2
m−1

2 + 2
m−3

2 + 1,
13

3

and according to the congruence of m modulo 4 :

2
m−1

2 + 2
m+1

4 + 1

3

or
2

m+1
2 + 2

m−1
4 + 1

3

Moreover, all have a 5-valued spectrum :

{0,±2(m+1)/2,±2(m+3)/2}



Conjecture

The Kasami-Welch exponent

d =
2tk + 1

2k + 1

is almost bent iff

t = 3 and (k,m) = 1

f̂ (a) =
∑
x∈L

µL(x
d + ax) =

∑
x∈L

µL(x
2tk+1 + ax2k+1)



Modular add-carry algorithm

Let j be a residue modulo q − 1.

j = (jm−1 . . . j1j0) dj = (sm−1 . . . s1s0)

Evans, Hollmann, Krattenthaler and Xiang introduced the modular
add-carry algorithm to analyze the weight of dj . There are carries
0 ≤ ci < wt (d) such that:

∀i , 2ci + si =
∑

k∈supp (d)

ji−k + ci−1

Adding these m equalities:∑
i

ci + wt (dj) = wt (d)wt (j)

whence

wt (jd) + wt(−j) = (wt (d)− 1)wt (j)−
∑

i

ci + m



Graph of the multiplication d

Assume that d = 2L + . . . + 20.

2ci−1 + si−1 = ji−1 + . . . + ji−1−L + ci−2

2ci + si = ji + . . . + ji−L + ci−1

2ci+1 + si+1 = ji−1 + . . . + ji+1−L + ci

(ji−1, . . . , ji−1−L, ci−2) → (ji , . . . , ji−L, ci−1) → (ji+1, . . . , ji+1−L, ci )

The sequences of carries of dj correspond to cycle of lentgh m in
the graph of order 2L+1wt (d)

(jL, . . . , j0, c) −→ (∗, jL . . . , j1, c
′)

where
c ′ = (c +

∑
k∈supp (d)

jL−k)/2



J-set and cycles

We define the cost of the vertex

x = (jL, . . . , j0, c)

K (x) = (wt (d)− 1)jL − c

and the cost of cycle of length n

x1 → x2 → . . . → xn → x1

as
n∑

i=1

K (xi )

The cycles of length m minimizing the cost function correspond to
the elements of the J-set.



Example d = 3



Cost function, d = 3

The cost of an elementary cycle is of length 2L or 2L + 1 is greater
than −L : the valuation is greater or equal to bm+1

2 c. The two
cycles of type (2,−1) and (3,−1) shows this is the exact value.



Graph, d = 13/3



The graph after simplification



Cost function, d = 13/3



Cycles analysis

I The cost of elementary cycles of length 2L or 2L + 1 are
greater or equal to −L (computer checking).

val (
13

3
) ≥ m + 1

2

I There exists a cycle of type (2,−1) connected to cycle of type
(5,−2) :

val (
13

3
) =

m + 1

2

Indeed, if m = 5 + 2L then one can loop L times in the cycle
of type (2,−1) and one time over the cycle of type (5,−2) for
a total cost of m−1

2



end of the talk.



Sarwate-Pursley

Conjecture I. Let m be even. If s is coprime to q − 1 then

R(s) ≥
√

4q



Helleseth conjecture

If s is coprime to q − 1, the Fourier coefficient of x s at 0 is equal
to zero. The Helleseth conjecture claims the existence of an
outphase Fourier coefficient equal to zero.

Conjecture II. If s is coprime to q − 1 then

∃a ∈ L− {0}, f̂s(a) = 0.



Dobbertin conjecture

type s condition number

Gold 2r + 1 (r ,m) = 1) ϕ(m)/2

Kasami 22r − 2r + 1 (r ,m) = 1) ϕ(m)/2

Welch 2(m−1)/2 + 3 1

Niho 22r + 2r − 1 4r ≡ −1 mod m 1

Table: Known almost bent exponents, m odd.

The Dobbertin conjecture claims the above list is complete.

Conjecture III. In odd dimension, up to equivalence, the number
of good exponents is equal to

ϕ(m) + 1.

(smaller if m ≤ 9).



Leander conjecture

Let nbz (s) the number of a ∈ L such that f̂ (a) = 0.

Conjecture IV.
If 1 < d < q − 1 is coprime to q − 1 then

nbz (−1) ≤ nbz (d)

Of course, this conjecture implies Helleseth (1) since

nbz (−1) = 1 + H(−1 + 4q) > 0

where H(d) is the class number of Q(
√

d), see e.g.
Lachaud-Wolfmann, 1990.



Langevin-Véron conjecture (1)

Let us denote by L(s) the smallest non zero Fourier coefficient of
the power function x s in absolute value.

Conjecture V.

If 1 < s < q − 1 is coprime to q − 1 then the spectrum of x s

contains the two value walues

−L(s), and, −L(s)

I Non-linearity of power functions

DCC, 2005.

false!



Langevin-Véron conjecture (2)

Conjecture VI.

If s is coprime to 2m − 1 then L(s) is a power of two.

false!



Helleseth (1976)

Conjecture VII.

If m is a power of 2 and s coprime to 2m − 1 then

]spec (s) 6= 3

I Proved in the symmetric case by Calderbank, McGuire,
Poonen and Rubinstein ( 1996 )

I Langevin-Véron conjecture implies this conjecture.



Michko conjecture

Conjecture VIII.

If m is odd and coprime to 2m − 1 then

]spec (s) 6= 4

If m ≥ 5 is odd
]spec (s) 6= 6

Remark that if m = 5 then

spec (15) = 5[−8], 5[−4], 6[0], 10[4], 5[8], 1[12],
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