Checking the main conjectures related to the Walsh-Fourier Spectrum of Power functions

Gregor Leander, Philippe Langevin

BFCA07, Paris, May 2007.

K ロ ▶ K @ ▶ K 할 X K 할 X → 할 X → 9 Q Q ^

Plan

[Introduction](#page-2-0)

[Power function](#page-7-0)

[Niho conjectures](#page-12-0)

[Main conjectures](#page-20-0)

[Checking conjectures up 25](#page-29-0)

[Dobbertin conjecture up 33](#page-42-0)

K ロ ▶ K @ ▶ K 할 X K 할 X → 할 X → 9 Q Q ^

[Valuation and graphs](#page-50-0)

[Conclusion](#page-58-0)

correlation of binary sequences

A binary sequence takes values ± 1 . The *crosscorrelation* at $t = 0, 1, \ldots$ of a pair s' and s of binary sequences of length n is defined by

$$
s'\times s(t)=\sum_{i=0}^{n-1}s_i's_{i+t}
$$

The intercorrelation parameter $\theta(s',s)$ is the maximum of

$$
\sup_{t\neq 0} |s\times s(t)|, \quad \sup_t |s'\times s(t)|, \quad \sup_{t\neq 0} |s'\times s'(t)|
$$

A good pair for applications in communication and radar, when $\theta(\mathbf{s}',\mathbf{s})$ is small. By a bound of Sidelnikov (1971)

$$
\sqrt{\frac{n}{2}} \leq \theta(s',s).
$$

AD A REAKEN E VAN

Optimal binary pair

Given a length n,

 \blacktriangleright What is the minimal value of $\theta(s', s)$?

A few years ago, I contacted some specialists for this problem :Turyn, Golomb. . . It seems there is no work on this subject outside the field of m-sequences !

 \triangleright Note that for a pair of sequences such that

$$
t\neq 0\Longrightarrow \mathsf{s}'\times \mathsf{s}(t)=\mathsf{s}\times \mathsf{s}(t)=-1
$$

a bound of Cahn and Stalder (1964) gives

$$
\theta(s',s) \geq \sqrt{n} > \sqrt{\frac{n}{2}}
$$

K ロ ▶ K @ ▶ K 할 X K 할 X → 할 X → 9 Q Q ^

m-sequences

Let L be finite field of order $q = 2^m$ and let μ_l be its canonical additive character

$$
\mu_L(x) = (-1)^{\text{Tr}_L(x)}
$$

where $\text{Tr}_L({\sf x})={\sf x}+{\sf x}^2+\cdots+{\sf x}^{2^{m-1}}.$ An *m-sequence* is a binary sequence of period $n = q - 1$ having the form

$$
s_i = \mu_L(\gamma^i), \quad i = 0, 1, \ldots, q-1.
$$

where γ is a primitive root of L. By the orthogonality relations of characters,

$$
t\neq 0\Longrightarrow s\times s(t)=-1
$$

But applying Sidelnikov's bound to *m*-sequences gives :

$$
\theta(s',s) \geq 1 + \sqrt{2q} > \sqrt{n} > \sqrt{\frac{n}{2}}
$$

Decimation

Let γ' be an other primitive root of L. There exits an integer d such that

$$
\gamma'=\gamma^{\textit{d}}
$$

and the m-sequence \boldsymbol{s}' defined by γ' is a d -decimation of \boldsymbol{s}

$$
s_i'=s_{di}
$$

The correlation spectra can be nice but are never optimal for the Cahn-Stalder bound. There exists pairs of m-sequences such that

$$
\sup_t |s' \times s(t)| = 1 + \sqrt{2q}, \quad (m \text{ odd})
$$

optimal for m-sequences by Sidelnikov's bound.

$$
\sup_t |s' \times s(t)| = 1 + \sqrt{4q}, \quad (m \text{ even})
$$

K ロ ▶ K @ ▶ K 할 X K 할 X → 할 X → 9 Q Q ^

may be not optimal.

Preferred pair of m-sequences

The cross-correlation spectra corresponding to these nice pairs of m-sequences:

► *m* odd,
\n
$$
-1 - \sqrt{2q}
$$
, -1 , $-1 + \sqrt{2q}$ (1)
\n► *m* = 0 mod 4
\n $-1 - \sqrt{q}$, -1 , $-1 + \sqrt{q}$, $-1 + 2\sqrt{q}$ (2)
\n► *m* = 2 mod 4
\n $-1 - 2\sqrt{q}$, -1 , $-1 + 2\sqrt{q}$ (3)

The pairs of m-sequences with a three valued spectrum [\(1\)](#page-6-0) or [\(3\)](#page-6-1) are often called *preferred pairs* of *m*-sequences.

K ロ ▶ K @ ▶ K 할 X K 할 X → 할 X → 9 Q Q ^

Fourier coefficient

The Fourier coefficient of $f \in L[X]$, at $a \in L$ is

$$
\widehat{f}(a) = \sum_{x \in L} \mu_L(f(x) + ax)
$$

Note that $\hat{f}(a)$ is a Walsh coefficient of the Boolean function

 $x \mapsto \text{Tr}_L(f(x)).$

Let us consider the pair

$$
s_i' = \mu_L(f(\gamma^i)), \quad \text{and} \quad s_i = \mu_L(\gamma^i)
$$

The crosscorrelation at t and the Fourier coefficient at γ^t are connected by

$$
1+s'\times s(t)=\widehat{f}(\gamma^t)
$$

K ロ ▶ K @ ▶ K 할 X K 할 X → 할 X → 9 Q Q ^

Notation and terminology

 \blacktriangleright The spectrum of f

$$
\operatorname{spec}(f)=\{\widehat{f}(a)\mid a\in L\}
$$

 \blacktriangleright The spectral amplitude

$$
R(f) = \sup_{a \in L} |\widehat{f}(a)|
$$

 \blacktriangleright The number of zeroes of f

$$
\mathrm{nbz}\left(f\right)=\sharp\{a\mid \widehat{f}(a)=0\}
$$

 \blacktriangleright The valuation

$$
\mathrm{val}(f) = \nu, \qquad \forall a \in L, \quad 2^{\nu} \mid \widehat{f}(a)
$$

but there exists a such $\hat{f}(a)$ is not divisible by $2^{1+\nu}$

Power Function

It corresponds to the monomial case where $f(x)=b\mathsf{x}^d$. In this talk, we assume that the exponent d is invertible modulo $q - 1$.

$$
\sum_{x \in L} \mu_L(bx^d + ax) = \sum_{x \in L} \mu_L(bc^d x^d + acx)
$$

$$
= \sum_{x \in L} \mu_L(x^d + acx)
$$

So we may assume $b = 1$. In that case, it is easy to prove that

$$
\operatorname{spec}(d)=\operatorname{spec}(2d)\quad\text{and}\quad\operatorname{spec}(d)=\operatorname{spec}(d^{-1})
$$

The exponents d and d' are equivalent :

$$
\exists k, \quad d' = 2^k d, \quad \text{or} \quad d' = 2^k d^{-1}
$$

The number of distincts spectrums with d invertible is (roughly) less or equal to the number $\frac{2^{m-1}}{m}$ m

Gold exponent

$$
d=2^k+1
$$

In that case $x \mapsto \text{Tr}_{L}(x^{d})$ is a quadratic form, its radical has dimension of $r = (2k, m)$. It folllows a three valued spectrum :

$$
-2^{\frac{m+r}{2}}, \quad 0, \quad +2^{\frac{m+r}{2}}
$$

An exponent d is called a almost bent if its spectrum takes the three values:

$$
-2^{\frac{m+1}{2}}, \quad 0, \quad +2^{\frac{m+1}{2}}
$$

The distribution of the Fourier coefficients of an AB-exponent are given by the Parseval identity $\sum_{a \in L} \widehat{f}(a)^2 = 2^{2m}$

$$
2^{m-1} \quad [0], \qquad 2^{m-2} \pm 2^{\frac{m-3}{2}} \quad [\pm 2^{\frac{m+1}{2}}]
$$

AD A REAKEN E VAN

Kasami exponent

$$
d=2^{2k}-2^k+1
$$

It is again a three valued spectrum :

$$
-2^{\frac{m+r}{2}}, \quad 0, \quad +2^{\frac{m+r}{2}}
$$

The proof is not so simple. In the case $(2k, m) = 1$, one can use the trick of Dobbertin

$$
2^{2k} - 2^k + 1 = \frac{2^{3k} + 1}{2^k + 1}
$$

It follows

$$
\widehat{f}(a) = \sum_{x \in L} \mu_L(f(x) + ax) = \sum_{x \in L} \mu_L(x^{2^{3k}+1} + ax^{2^k+1})
$$

The dimension of the radical of the quadratic form $x \mapsto \text{Tr}_L(x^{2^{3k}+1}+ax^{2^k+1})$ is less or equal to 3. Moreover, if it is 3 the quadratic form Q_a is defective, and

$$
\widehat{f}(a)=0.
$$

Niho conjecture on 3-valued exponents

In 1972, on the basis of numerical experiments ($m \leq 17$), Niho conjectures the exponents (1) , (2) , (3) are almost bent.

It is not possible to sketch the proof in a few lines! But all of these conjectures have been proven in recent papers by Cusick, Dobbertin, Canteaut, Charpin, Xiang, Hollmann (2000).

Kasami-Welch exponent

Using quadratic form theory, one can easely prove that the Fourier coefficients of the Kasami-Welch exponent

$$
d=\frac{2^{tk}+1}{2^k+1}
$$

takes values in

$$
0, \quad \pm 2^{\frac{m+e}{2}}, \quad \pm 2^{\frac{m+3e}{2}}, \quad \pm 2^{\frac{m+5e}{2}}, \quad \ldots
$$

where $e = (m, k)$.

- \blacktriangleright The case $t = 3$ corresponds to the Kasami exponent. In this case the spectrum is actually 3-valued.
- In the case $t = 5$ and $\frac{m}{e}$ odd, Niho proved the spectrum is at most 5-valued. In fact the spectrum is 5-valued (Kasami). A simpler proof was given by Bracken (2004), generalizing a proof of the $t = 3$ case by Dobbertin (1999).

On the basis of numerical experiences, Niho (page 72) proposes the following conjectures on Kasami-Welch exponents :

K □ ▶ K @ ▶ K 할 X K 할 X (할) 10 Q Q Q

A Counter example

Take $m = 25$, $k = 3$, $t = 19$!!!

This is a consequence of a joint work with McGuire and Leander.

K ロ ▶ K @ ▶ K 할 X K 할 X 및 할 X 9 Q @

Sketch of proof 1/3

The basic idea (McGuire) to disprove conjecture 4-4 consists in finding intances of $d = (2^{tk} + 1)/(2^{k} + 1)$ such that the Fourier coefficient at <mark>one</mark> is greater than $2^{\frac{m+3}{2}}.$

$$
\widehat{f}(1) = \sum_{x \in L} \mu_L(x^d + x)
$$

=
$$
\sum_{x \in L} \mu_L(x^{2^{tk}+1} + x^{2^k+1})
$$

The radical of the quadratic form $\mathit{Q}(x) = \mathrm{Tr}_L(x^{2^{tk}+1}+x^{2^k+1})$ is the set of solutions of the equation :

$$
x^{2^{tk}} + x^{2^{-tk}} + x^{2^k} + x^{2^{-k}} = 0
$$

denoting by *n* the dimension of the radical of Q

$$
\widehat{f}(1) = \begin{cases} \pm 2^{\frac{m+n}{2}}, & Q \text{ not defective;} \\ 0, & Q \text{ defective.} \end{cases}
$$

Sketch of proof 2/3

By the theory of Linearized Polynomials, the dimension of the radical, is equal to number of $x \in L$ solutions of the system

$$
x^{tk} + x^{-tk} + x^k + x^{-k} = 0, \quad x^m + 1 = 0
$$

Remark that

$$
(x^{r} + x^{-r})(x^{s} + x^{-s}) = x^{r+s} + x^{r-s} + x^{s-r} + x^{-r-s}
$$

We factorize the radical equation with $tk = r + s$ and $k = r - s$ i.e.

$$
r = \frac{(t+1)k}{2}, \quad s = \frac{(t-1)k}{2}.
$$

$$
(x^{r} + x^{-r})(x^{s} + x^{-s}) = 0, \quad x^{m} + 1 = 0
$$

Now, if
$$
(s, m) = 1
$$
 and $r \mid m$ then the radical is the subfield of degree r , and the quadratic form is not defective, whence

$$
\widehat{f}(1)=2^{\frac{m+r}{2}}.
$$

AD A REAKEN E VAN

Sketch of proof 3/3

It suffices now to go the market to find k , t and m such that

$$
\frac{(t+1)k}{2} = r|m, \text{ and } \frac{(t-1)k}{2} = s \quad (s, m) = 1
$$

The smallest solutions are obtained with $m = 25$, $k = 3$, and $t = 19$:

$$
r = \frac{(t+1)k}{2} = 30 \equiv 5 \mod 25
$$

$$
s = \frac{(t-1)k}{2} = 25 \equiv 2 \mod 25
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Numerical Projects

In fact, all the Niho conjectures concerning Kasami-Welch exponents are false, the first counter-examples are in dimension 21 and 23. Since a lot of conjectures concerning power function are based on the numerical experiences done by Niho :

 $m < 17$ (1972)

It is necessary to update the numerical computations. We have four precise projects:

Sarwate-Pursley

Conjecture I. Let m be even. If s is coprime to $q - 1$ then $R(s) \geq \sqrt{4q}$

K ロ X - K 제공 X 제공 X 제공 및 및 X - K 이익(N)

If s is coprime to $q-1$, the Fourier coefficient of x^s at 0 is equal to zero. The Helleseth conjecture claims the existence of an outphase Fourier coefficient equal to zero.

Conjecture II. If s is coprime to $q - 1$ then

$$
\exists a \in L - \{0\}, \quad \widehat{f}_s(a) = 0.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Dobbertin conjecture

type		condition	number
Gold	$2^{r}+1$	$(r, m) = 1$	$\varphi(m)/2$
Kasami	$\sqrt{2^{2r}-2^r+1}$	$(r, m) = 1)$	$\varphi(m)/2$
Welch	$2^{(m-1)/2}+3$		
Niho		$2^{2r} + 2^r - 1$ $4r \equiv -1$ mod m	

Table: Known almost bent exponents, m odd.

The Dobbertin conjecture claims the above list is complete.

Conjecture III. In odd dimension, up to equivalence, the number of good exponents is equal to

$$
\varphi(m)+1.
$$

K ロ ▶ K 레 ▶ K 로 ▶ K 로 ▶ 『로 → 이익단

(smaller if $m \leq 9$).

Leander conjecture

Let nbz (s) the number of $a \in L$ such that $\hat{f}(a) = 0$.

Conjecture IV. If $1 < d < q-1$ is coprime to $q-1$ then

 $n\text{b}z(-1) \leq n\text{b}z(d)$

Of course, this conjecture implies Helleseth (1) since

$$
\mathrm{nbz}\,(-1)=1+\mathit{H}(-1+4q)>0
$$

4 D > 4 P > 4 E > 4 E > E + 9 Q O

where $H(d)$ is the class number of $\operatorname{Q}($ √ (d) , see e.g. Lachaud-Wolfmann, 1990.

Langevin-Véron conjecture (1)

Let us denote by $L(s)$ the smallest non zero Fourier coefficient of the power function x^s in absolute value.

Conjecture V.

If $1 < s < q - 1$ is coprime to $q - 1$ then the spectrum of x^s contains the two value walues

$$
-L(s), \quad \text{and}, \quad -L(s)
$$

AD A REAKEN E VAN

^I Non-linearity of power functions DCC, 2005.

Langevin-Véron conjecture (2)

Conjecture VI.

If s is coprime to $2^m - 1$ then $L(s)$ is a power of two.

Helleseth (1976)

Conjecture VII.

If m is a power of 2 and s coprime to $2^m - 1$ then

 $|$ spec $(s) \neq 3$

K ロ ▶ K @ ▶ K 할 X K 할 X → 할 X → 9 Q Q ^

- \triangleright Proved in the symmetric case by Calderbank, McGuire, Poonen and Rubinstein (1996)
- \blacktriangleright Langevin-Véron conjecture implies this conjecture.

Michko conjecture

Conjecture VIII.

If m is odd and coprime to $2^m - 1$ then

 $\text{Ispec}(s) \neq 4$

If $m \geq 5$ is odd

 $\sharp \text{spec}(s) \neq 6$

Remark that if $m = 5$ then

 $spec(15) = 5[-8], 5[-4], 6[0], 10[4], 5[8], 1[12],$

K ロ ▶ K @ ▶ K 할 X K 할 X → 할 X → 9 Q Q ^

Forgotten conjectures ?

All the propositions are welcome !

Considering the true table of a Boolean function f :

 $f(0...00) f(0...01) f(00...10) f(0...11)...f(1...11)$ The Walsh-Fourier coefficient of f is computed in $m2^m$ steps by the very short recursive code. It is based on the relation

$$
\widehat{f}(b,a)=\widehat{f}_0(a)+(-1)^b\widehat{f}_1(a)
$$

where $b\in\mathbb{F}_2$, $a\in\mathbb{F}_2^{m-1}$ and

$$
f_0(x) = f(0, x)
$$
, and $f_1(x) = f(1, x)$

Fourier algorithm

イロメ 不優々 不着 メイ君 メー 道一 2990

Running time

Fourier algorithm has complexity $m2^m$. The recursive version is faster than the iterative version.K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 1000 W

Running time

The work factor to compute, up to equivalence, the spectrums of the x^s , s invertible in dimension 25 looks like :

$$
\frac{1}{50} \times \varphi(2^{25} - 1) \times 6.92 = 4484160 \sec = 52 \text{ days}
$$

The running time for all invertible power functions in dimension 25 is estimated to 52 days, but there is an extra time of 150 days for the datas managements ! We used network tools (bigloop) to deals computations over 54 processors.

All the results are avaible :

http://langevin.univ-tln.fr/project/spectrum

4 D > 4 P > 4 E > 4 E > E + 9 Q O

Baby file

d=1 127 [0], 1 [128] d=3 64 [0], 28 [-16], 36 [16] d=5 64 [0], 28 [-16], 36 [16] d=7 36 [0], 1 [-40], 14 [-16], 28 [-8], 28 [8], 14 [16], 7 [24] d=9 64 [0], 28 [-16], 36 [16] d=11 64 [0], 28 [-16], 36 [16] d=19 36 [0], 1 [-40], 28 [-8], 14 [-16], 14 [16], 28 [8], 7 [24] d=21 36 [0], 1 [-40], 14 [-16], 28 [-8], 28 [8], 7 [24], 14 [16] d=23 64 [0], 28 [-16], 36 [16] d=63 15 [0], 8 [-12], 7 [-20], 7 [-16], 21 [-8], 7 [-4], 14 [16], 21 [4], 14 [12], 7 [8], 7 [20]

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 1000

Table: All the spectrum, up to equivalence, for $m = 7$ reported in the data file spec-7.txt

Example in dimension 8

Checking conjectures. . .

We computed the spectrum of all power functions, up to $m = 25$, the conjectures still hold:

KORK EX KEY KEY KORA

- \blacktriangleright Sarwate conjecture
- \blacktriangleright Helleseth conjecture
- \blacktriangleright Dobbertin conjecture
- \blacktriangleright Leander conjecture
- \blacktriangleright Michko conjecture

Conjecture V is false

Recall this conjectures claims that the minimal value in the spectrum appears with two signs. We found exactely 6 counter examples, 3 are in dimension 21 and 3 others in dimension 24.

 $d = 149797 : 5712$ [-3968], 38745 [-3072], 12754 [-2688], 116298 [-2176], 78666 [-1792], 13314 [-1408], 195678 [-1280], 195888 [-896], 63756 [-512], 194649 [-384], 7119 [-128], 258854 [0], 128982 [384], 117579 [512], 29631 [768], 195530 [896], 2569 [1152], 130977 [1280], 38346 [1408], 43722 [1664], 76881 [1792], 6804 [2048], 65352 [2176], 5880 [2304], 462 [2432], 28434 [2560], 13104 [2688], 7056 [2944], 13125 [3072], 966 [3328], 7140 [3456], 63 [3712], 2534 [3840], 504 [4224], 63 [4608], 7 [4992], 1 [298880], 3 [299264], 3 [300160],

4 D > 4 P > 4 E > 4 E > E + 9 Q O

Conjecture VI is false

Recall this conjectures claims that the minimal value is a power of 2. We found exactely 3 in dimension 21 :

 \triangleright s = 1198373 : 44100 [-6656], 312420 [-5888], 932802 [-5120], 1561332 [-4352], 1559748 [-3584], 933828 [-2816], 104700 [-2304], 312888 [-2048], 625578 [-1536], 44124 [-1280], 1559172 [-768], 2077957 [0], 1562208 [768], 623634 [1536], 103644 [2048], 103760 [2304], 519528 [2816], 1039038 [3584], 1039452 [4352], 518514 [5120], 104916 [5888], 57432 [6400], 231504 [7168], 345036 [7936], 232080 [8704], 56844 [9472], 18886 [10752], 58524 [11520], 57492 [12288], 19452 [13056], 3720 [15104], 8328 [15872], 3744 [16640], 360 [19456], 456 [20224], 8 [23808], 1 [2391040], 3 [2394112], 3 [2401280],

Size spectrum distribution

イロト イ部 トイミト イミト \equiv 940

Number of zeroes distribution

イロメ イ部メ イ君メ イ君メ 重 299

Valuation distribution

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

Exponent of high valuation

 ν nb. of s

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

valuation of AB-exponent

Using Stickelberger's conruences on Gauss one can prove that the valuation of d is \cdot

$$
\operatorname{val}\left(\boldsymbol{d}\right) \geq \min_{1 \leq j \leq q-2} \operatorname{wt}\left(-j\right) + \operatorname{wt}\left(j\boldsymbol{d}\right) =: \nu
$$

with equality when $(d, 2^m - 1) = 1$. One can, of course, use McEliece theorem to get this result but. . . McEliece theorem depend on Stickelberger's congruences also !

 \blacktriangleright The *I*-set of *d* \cdot

$$
J = \{j \mid \text{wt}(-j) + \text{wt}(jd) = \nu\}
$$

$$
\hat{f}(a) \equiv 2^{\nu} \sum_{j \in J} a^{dj} \pmod{2^{\nu+1}}
$$

4 D > 4 P > 4 E > 4 E > E + 9 Q O

In particular, d is AB iff $\nu = \frac{m+1}{2}$ $\frac{+1}{2}$ and $\overline{a}\mapsto\sum_{j\in J}a^{dj}$ is balanced.

Sieving good candidates

We remark that all the exponents of the form

$$
d=\frac{-r}{s}
$$

where $\mathrm{wt}\left(r\right) +\mathrm{wt}\left(s\right) \leq\frac{n-1}{2}$ $\frac{-1}{2}$ are not AB-exponents. Proof.

For such a d, we have

$$
\mathrm{wt}(s)+\mathrm{wt}(-sd)=\mathrm{wt}(s)+\mathrm{wt}(r)<\frac{m+1}{2}.
$$

Therefore it exists a such that

$$
\widehat{F}(a) \neq \pm 2^{(m+1)/2}
$$

AD A REAKEN E VAN

Sieving good candidates

Generate all the pair (r, s) with

$$
\mathrm{wt}(s) \leq \mathrm{wt}(r), \quad \mathrm{wt}(s) + \mathrm{wt}(r) \leq \frac{m-1}{2}.
$$

and mark $d = \frac{-r}{s}$ $\frac{-r}{s}$ as a bad exponent.

- \triangleright All the exponents which are not marked have valuation less or equal to $\frac{m-1}{2}$.
- \triangleright Aan exponent which is not marked as bad is good candidates to be AB-exponents.

4 D > 4 P > 4 E > 4 E > E + 9 Q O

- \blacktriangleright The work factor for sieving is about $2^{1.2m}$.
- \blacktriangleright The set of candidates has a very small size.

Checking Dobbertin farther

We detemine all the good candidates up to the dimension 33.

- \triangleright 69 for dimension 27.
- \triangleright 80 for dimension 29.
- \triangleright 93 for dimension 31
- \blacktriangleright 141 for dimension 33

All these exponents are Kasami-Welch exponents except a few exceptions : Niho and Welch exponent, but also, for each odd m , 3 new exponents of valution $\frac{m+1}{2}$ with a 5-valued spectrum.

K ロ X (日) X 제공 X 제공 X - 공 : X 이익(N)

Exceptions of valuation $\frac{m+1}{2}$

Exceptions in another form

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 1000

Exceptions of valuation $\frac{m+1}{2}$

Exceptions in another form

Modular add-carry algorithm

Let *j* be a residue modulo $q - 1$.

$$
j = (j_{m-1} \ldots j_1 j_0) \quad dj = (s_{m-1} \ldots s_1 s_0)
$$

Evans, Hollmann, Krattenthaler and Xiang introduce the modular add-carry algorithm to analyze the weight of dj . There exist carries $0 \leq c_i \leq \text{wt}(d)$ such that:

$$
\forall i, \quad 2c_i + s_i = \sum_{k \in \text{supp}(\boldsymbol{d})} j_{i-k} + c_{i-1}
$$

Adding these m equalities:

$$
\sum_i c_i + \mathrm{wt}(dj) = \mathrm{wt}(d) \mathrm{wt}(j)
$$

whence

$$
\mathrm{wt}\,(jd) + wt(-j) = (\mathrm{wt}\,(d) - 1)\mathrm{wt}\,(j) - \sum_i c_i + m
$$

J-set and cycles in graph

Assume that

$$
d=2^L+\ldots+2^0
$$

We consider the graph of order 2^{L+1} wt (d) vertices and edges:

$$
(j_L,\ldots,j_0,c)\longrightarrow(*,j_L\ldots,j_1,c')
$$

where

$$
c' = (c + \sum_{k \in \text{supp} (d)} j_{L-k})/2
$$

We define the cost of the vertex (j, c)

$$
K(j,c)=(\mathrm{wt}\,(d)-1)j_L-c
$$

The cycles of length m minimizing the cost function correspond to the elements of the Jset.

AD A REAKEN E VAN

Example $d = 3$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

Cost $d = 3$

The cost of an elementary cycle is of length $2L$ or $2L + 1$ is greater than $-L$: the valuation is greater or equal to $\lfloor \frac{m+1}{2} \rfloor$ $\frac{+1}{2}$. The two cycles of type $(2, -1)$ and $(3, -1)$ shows this is the exact value.

Graph for 13/3

ă $2Q$ K ロト K 御 ト K 君 ト K 君

The graph after simplifictaion

イロメ 不優々 不着 メイ君 メー 道一

 299

Costs for 13/3

唾 299 イロト イ押ト イヨト イ Þ

Cycles analysis

 \triangleright The cost of elementary cycles of length 2L or 2L + 1 are greater or equal to $-L$ (computer).

$$
\operatorname{val} \big(\frac{13}{3} \big) \geq \frac{m+1}{2}
$$

 \triangleright There exists a cycle of type $(2, -1)$ connected to cycle of type $(5, -2)$:

$$
\operatorname{val}\left(\frac{13}{3}\right)=\frac{m+1}{2}
$$

Indeed, if $m = 5 + 2L$ then one can loop L times in the cycle of type $(2, -1)$ and one time over the cycle of type $(5, -2)$ for a total cost of $\frac{m-1}{2}$

Conclusion

- \blacktriangleright All the main conjecture are checked up to 25
- \triangleright Dobbertin conjecture up to 33
- \blacktriangleright New nice exponents :

$$
2^{\frac{m-1}{2}} + 2^{\frac{m-3}{2}} + 1, \qquad \frac{13}{3}
$$

And according to the congruence of m modulo 4 :

$$
\frac{2^{\frac{m-1}{2}}+2^{\frac{m+1}{4}}+1}{3}
$$

or

$$
\frac{2^{\frac{m+1}{2}}+2^{\frac{m-1}{4}}+1}{3}
$$

K ロ ▶ K @ ▶ K 할 X K 할 X → 할 X → 9 Q Q ^

 \triangleright By mean of not usual tools, we determined the valuation of the nice exponent 13/3.