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correlation of binary sequences

A binary sequence takes values ±1. The crosscorrelation at
t = 0, 1, . . . of a pair s ′ and s of binary sequences of length n is
defined by

s ′ × s(t) =
n−1∑
i=0

s ′i si+t

The intercorrelation parameter θ(s ′, s) is the maximum of

sup
t 6=0

|s × s(t)|, sup
t
|s ′ × s(t)|, sup

t 6=0
|s ′ × s ′(t)|

A good pair for applications in communication and radar, when
θ(s ′, s) is small. By a bound of Sidelnikov (1971)√

n

2
≤ θ(s ′, s).



Optimal binary pair

Given a length n,

I What is the minimal value of θ(s ′, s) ?

A few years ago, I contacted some specialists for this
problem :Turyn, Golomb. . . It seems there is no work on this
subject outside the field of m-sequences !

I Note that for a pair of sequences such that

t 6= 0 =⇒ s ′ × s(t) = s × s(t) = −1

a bound of Cahn and Stalder (1964) gives

θ(s ′, s) ≥
√

n >

√
n

2



m-sequences

Let L be finite field of order q = 2m and let µL be its canonical
additive character

µL(x) = (−1)TrL(x)

where TrL(x) = x + x2 + · · ·+ x2m−1
. An m-sequence is a binary

sequence of period n = q − 1 having the form

si = µL(γ
i ), i = 0, 1, . . . , q − 1.

where γ is a primitive root of L. By the orthogonality relations of
characters,

t 6= 0 =⇒ s × s(t) = −1

But applying Sidelnikov’s bound to m-sequences gives :

θ(s ′, s) ≥ 1 +
√

2q >
√

n >

√
n

2



Decimation

Let γ′ be an other primitive root of L. There exits an integer d
such that

γ′ = γd

and the m-sequence s ′ defined by γ′ is a d-decimation of s

s ′i = sdi

The correlation spectra can be nice but are never optimal for the
Cahn-Stalder bound. There exists pairs of m-sequences such that

sup
t
|s ′ × s(t)| = 1 +

√
2q, (m odd)

optimal for m-sequences by Sidelnikov’s bound.

sup
t
|s ′ × s(t)| = 1 +

√
4q, (m even)

may be not optimal.



Preferred pair of m-sequences

The cross-correlation spectra corresponding to these nice pairs of
m-sequences:

I m odd,
− 1−

√
2q, −1, −1 +

√
2q (1)

I m = 0 mod 4

− 1−√
q, −1, −1 +

√
q, −1 + 2

√
q (2)

I m = 2 mod 4

− 1− 2
√

q, −1, −1 + 2
√

q (3)

The pairs of m-sequences with a three valued spectrum (1) or (3)
are often called preferred pairs of m-sequences.



Fourier coefficient

The Fourier coefficient of f ∈ L[X ], at a ∈ L is

f̂ (a) =
∑
x∈L

µL(f (x) + ax)

Note that f̂ (a) is a Walsh coefficient of the Boolean function

x 7→ TrL(f (x)).

Let us consider the pair

s ′i = µL(f (γi )), and si = µL(γ
i )

The crosscorrelation at t and the Fourier coefficient at γt are
connected by

1 + s ′ × s(t) = f̂ (γt)



Notation and terminology

I The spectrum of f

spec (f ) = {f̂ (a) | a ∈ L}

I The spectral amplitude

R(f ) = sup
a∈L

|f̂ (a)|

I The number of zeroes of f

nbz (f ) = ]{a | f̂ (a) = 0}

I The valuation

val (f ) = ν, ∀a ∈ L, 2ν | f̂ (a)

but there exists a such f̂ (a) is not divisible by 21+ν



Power Function
It corresponds to the monomial case where f (x) = bxd . In this
talk, we assume that the exponent d is invertible modulo q − 1.

∑
x∈L

µL(bx
d + ax) =

∑
x∈L

µL(bcdxd + acx)

=
∑
x∈L

µL(x
d + acx)

So we may assume b = 1. In that case, it is easy to prove that

spec (d) = spec (2d) and spec (d) = spec (d−1)

The exponents d and d ′ are equivalent :

∃k, d ′ = 2kd , or d ′ = 2kd−1

The number of distincts spectrums with d invertible is (roughly)

less or equal to the number 2m−1

m



Gold exponent

d = 2k + 1

In that case x 7→ TrL(xd) is a quadratic form, its radical has
dimension of r = (2k,m). It folllows a three valued spectrum :

−2
m+r

2 , 0, +2
m+r

2

An exponent d is called a almost bent if its spectrum takes the
three values:

−2
m+1

2 , 0, +2
m+1

2

The distribution of the Fourier coefficients of an AB-exponent are
given by the Parseval identity

∑
a∈L f̂ (a)2 = 22m

2m−1 [0], 2m−2 ± 2
m−3

2 [±2
m+1

2 ]



Kasami exponent

d = 22k − 2k + 1

It is again a three valued spectrum :

−2
m+r

2 , 0, +2
m+r

2

The proof is not so simple. In the case (2k,m) = 1, one can use
the trick of Dobbertin

22k − 2k + 1 =
23k + 1

2k + 1

It follows

f̂ (a) =
∑
x∈L

µL(f (x) + ax) =
∑
x∈L

µL(x
23k+1 + ax2k+1)

The dimension of the radical of the quadratic form
x 7→ TrL(x23k+1 + ax2k+1) is less or equal to 3. Moreover, if it is 3
the quadratic form Qa is defective, and

f̂ (a) = 0.



Niho conjecture on 3-valued exponents

In 1972, on the basis of numerical experiments ( m ≤ 17 ), Niho
conjectures the exponents (1) ,(2), (3) are almost bent.

label exponents condition exponent

(1) 2
m−1

2 + 3 m odd Welch

(2) 2
m−1

2 + 2
m−1

4 − 1 m ≡ 1 (mod 4) Niho

(3) 2
m−1

2 + 2
3m−1

4 − 1 m ≡ 3 (mod 4) Niho

(4) 2
m+2

2 + 3 m ≡ 2 (mod 4) ?

(5) 2
m
2 + 2

m+2
4 + 1 m ≡ 2 (mod 4) ?

It is not possible to sketch the proof in a few lines! But all of these
conjectures have been proven in recent papers by Cusick,
Dobbertin, Canteaut, Charpin, Xiang, Hollmann (2000).



Kasami-Welch exponent

Using quadratic form theory, one can easely prove that the Fourier
coefficients of the Kasami-Welch exponent

d =
2tk + 1

2k + 1

takes values in

0, ±2
m+e

2 , ±2
m+3e

2 , ±2
m+5e

2 , . . .

where e = (m, k).

I The case t = 3 corresponds to the Kasami exponent. In this
case the spectrum is actually 3-valued.

I In the case t = 5 and m
e odd, Niho proved the spectrum is at

most 5-valued. In fact the spectrum is 5-valued (Kasami). A
simpler proof was given by Bracken (2004), generalizing a
proof of the t = 3 case by Dobbertin (1999).



Niho conjecture

On the basis of numerical experiences, Niho (page 72) proposes
the following conjectures on Kasami-Welch exponents :

conjecture cond. m spectrum

conj. 4-2 e > 1 3-valued 0, ±2
m+e

2

conj. 4-3 e = 1 not prime 5-valued

conj. 4-4 e = 1 prime 5-valued 0, ±2
m+1

2 , ±2
m+3

2



A Counter example

Take m = 25, k = 3, t = 19 !!!

Fourier Coeff. multiplicity

+215 1025
+214 337225
+213 7031500

0 18815956
−213 7031500
−214 337225
−215 1

This is a consequence of a joint work with McGuire and Leander.



Sketch of proof 1/3

The basic idea (McGuire) to disprove conjecture 4-4 consists in
finding intances of d = (2tk + 1)/(2k + 1) such that the Fourier

coefficient at one is greater than 2
m+3

2 .

f̂ (1) =
∑
x∈L

µL(x
d + x)

=
∑
x∈L

µL(x
2tk+1 + x2k+1)

The radical of the quadratic form Q(x) = TrL(x2tk+1 + x2k+1) is
the set of solutions of the equation :

x2tk
+ x2−tk

+ x2k
+ x2−k

= 0

denoting by n the dimension of the radical of Q

f̂ (1) =

{
±2

m+n
2 , Q not defective;

0, Q defective.



Sketch of proof 2/3

By the theory of Linearized Polynomials, the dimension of the
radical, is equal to number of x ∈ L solutions of the system

x tk + x−tk + xk + x−k = 0, xm + 1 = 0

Remark that

(x r + x−r )(x s + x−s) = x r+s + x r−s + x s−r + x−r−s

We factorize the radical equation with tk = r + s and k = r − s i.e.

r =
(t + 1)k

2
, s =

(t − 1)k

2
.

(x r + x−r )(x s + x−s) = 0, xm + 1 = 0

Now, if (s,m) = 1 and r |m then the radical is the subfield of
degree r , and the quadratic form is not defective, whence

f̂ (1) = 2
m+r

2 .



Sketch of proof 3/3

It suffices now to go the market to find k, t and m such that

(t + 1)k

2
= r |m, and

(t − 1)k

2
= s (s,m) = 1

The smallest solutions are obtained with m = 25, k = 3, and
t = 19:

r =
(t + 1)k

2
= 30 ≡ 5 mod 25

s =
(t − 1)k

2
= 25 ≡ 2 mod 25



Numerical Projects

In fact, all the Niho conjectures concerning Kasami-Welch
exponents are false, the first counter-examples are in dimension 21
and 23. Since a lot of conjectures concerning power function are
based on the numerical experiences done by Niho :

m ≤ 17 (1972)

It is necessary to update the numerical computations. We have
four precise projects:

determination of condition up to status

spectrums m ≤ 25 done
AB-exponents odd m ≤ 33 done
bent exponents even m ≤ 30 run
APN-exponent even m ≤?? no idea!



Sarwate-Pursley

Conjecture I. Let m be even. If s is coprime to q − 1 then

R(s) ≥
√

4q



Helleseth conjecture

If s is coprime to q − 1, the Fourier coefficient of x s at 0 is equal
to zero. The Helleseth conjecture claims the existence of an
outphase Fourier coefficient equal to zero.

Conjecture II. If s is coprime to q − 1 then

∃a ∈ L− {0}, f̂s(a) = 0.



Dobbertin conjecture

type s condition number

Gold 2r + 1 (r ,m) = 1) ϕ(m)/2

Kasami 22r − 2r + 1 (r ,m) = 1) ϕ(m)/2

Welch 2(m−1)/2 + 3 1

Niho 22r + 2r − 1 4r ≡ −1 mod m 1

Table: Known almost bent exponents, m odd.

The Dobbertin conjecture claims the above list is complete.

Conjecture III. In odd dimension, up to equivalence, the number
of good exponents is equal to

ϕ(m) + 1.

(smaller if m ≤ 9).



Leander conjecture

Let nbz (s) the number of a ∈ L such that f̂ (a) = 0.

Conjecture IV.
If 1 < d < q − 1 is coprime to q − 1 then

nbz (−1) ≤ nbz (d)

Of course, this conjecture implies Helleseth (1) since

nbz (−1) = 1 + H(−1 + 4q) > 0

where H(d) is the class number of Q(
√

d), see e.g.
Lachaud-Wolfmann, 1990.



Langevin-Véron conjecture (1)

Let us denote by L(s) the smallest non zero Fourier coefficient of
the power function x s in absolute value.

Conjecture V.

If 1 < s < q − 1 is coprime to q − 1 then the spectrum of x s

contains the two value walues

−L(s), and, −L(s)

I Non-linearity of power functions

DCC, 2005.



Langevin-Véron conjecture (2)

Conjecture VI.

If s is coprime to 2m − 1 then L(s) is a power of two.



Helleseth (1976)

Conjecture VII.

If m is a power of 2 and s coprime to 2m − 1 then

]spec (s) 6= 3

I Proved in the symmetric case by Calderbank, McGuire,
Poonen and Rubinstein ( 1996 )

I Langevin-Véron conjecture implies this conjecture.



Michko conjecture

Conjecture VIII.

If m is odd and coprime to 2m − 1 then

]spec (s) 6= 4

If m ≥ 5 is odd
]spec (s) 6= 6

Remark that if m = 5 then

spec (15) = 5[−8], 5[−4], 6[0], 10[4], 5[8], 1[12],



Forgotten conjectures ?

All the propositions are welcome !



Fourier algorithm

Considering the true table of a Boolean function f :

f (0 . . . 00)f (0 . . . 01)f (00 . . . 10)f (0 . . . 11) . . . f (1 . . . 11)

The Walsh-Fourier coefficient of f is computed in m2m steps by
the very short recursive code. It is based on the relation

f̂ (b, a) = f̂0(a) + (−1)b f̂1(a)

where b ∈ F2, a ∈ Fm−1
2 and

f0(x) = f (0, x), and f1(x) = f (1, x)



Fourier algorithm



Running time

m P4 3Gz IT-64 Xeon 2Gz P4 2.4Gz 1980 1972
6003 2071 3932 690.17 bogomips

15 0.00s 0.00s 0.00 0.00
16 0.00s 0.00s
17 0.01s 0.01s
18 0.03s 0.03s
19 0.07s 0.05s
20 0.15s 0.13s 0.21 0.18
21 0.32s 0.27s
22 0.68s 0.57s
23 1.50s 1.23s
24 3.24s 2.65s
25 6.92s 6.52s 10.96 8.9 6 days 1

2 year

Fourier algorithm has complexity m2m. The recursive version is
faster than the iterative version.



Running time

The work factor to compute, up to equivalence, the spectrums of
the x s , s invertible in dimension 25 looks like :

1

50
× ϕ(225 − 1)× 6.92 = 4484160 sec = 52days

The running time for all invertible power functions in dimension 25
is estimated to 52 days, but there is an extra time of 150 days for
the datas managements ! We used network tools (bigloop) to
deals computations over 54 processors.

All the results are avaible :

http://langevin.univ-tln.fr/project/spectrum



Baby file

d=1 127 [0], 1 [128]
d=3 64 [0], 28 [-16], 36 [16]
d=5 64 [0], 28 [-16], 36 [16]
d=7 36 [0], 1 [-40], 14 [-16], 28 [-8], 28 [8], 14 [16], 7 [24]
d=9 64 [0], 28 [-16], 36 [16]
d=11 64 [0], 28 [-16], 36 [16]
d=19 36 [0], 1 [-40], 28 [-8], 14 [-16], 14 [16], 28 [8], 7 [24]
d=21 36 [0], 1 [-40], 14 [-16], 28 [-8], 28 [8], 7 [24], 14 [16]
d=23 64 [0], 28 [-16], 36 [16]
d=63 15 [0], 8 [-12], 7 [-20], 7 [-16], 21 [-8], 7 [-4], 14 [16], 21 [4], 14 [12], 7 [8], 7 [20]

Table: All the spectrum, up to equivalence, for m = 7 reported in the
data file spec-7.txt



Example in dimension 8

d=1 255 [0], 1 [256]
d=3 28 [-32], 192 [0], 36 [32]
d=5 6 [-64], 240 [0], 10 [64]
d=7 16 [-32], 52 [-16], 105 [0], 68 [16], 14 [32], 1 [64]
d=9 28 [-32], 192 [0], 36 [32]
d=11 1 [-64], 8 [-32], 64 [-16], 101 [0], 68 [16], 10 [32], 4 [48]
d=13 18 [-32], 48 [-16], 101 [0], 84 [16], 4 [48], 1 [64]
15 120 [-16], 136 [16]

d=17 255 [0], 1 [256]
d=19 88 [-16], 88 [0], 64 [16], 8 [32], 8 [48]
d=21 4 [-32], 96 [-16], 48 [0], 96 [16], 12 [32]
d=23 88 [-16], 90 [0], 56 [16], 20 [32], 2 [64]
d=25 1 [-64], 80 [-16], 90 [0], 80 [16], 5 [64]
d=27 1 [-32], 72 [-16], 108 [0], 72 [16], 3 [96]
d=31 80 [-16], 120 [0], 16 [16], 40 [32]
d=39 28 [-32], 192 [0], 36 [32]
d=43 8 [-32], 60 [-16], 109 [0], 76 [16], 1 [64], 2 [96]

Table: Some spectrums for m = 8 reported in the data file spec-8.txt



Checking conjectures. . .

We computed the spectrum of all power functions, up to m = 25,
the conjectures still hold:

I Sarwate conjecture

I Helleseth conjecture

I Dobbertin conjecture

I Leander conjecture

I Michko conjecture



Conjecture V is false

Recall this conjectures claims that the minimal value in the
spectrum appears with two signs. We found exactely 6 counter
examples, 3 are in dimension 21 and 3 others in dimension 24.

I d = 149797 : 5712 [-3968], 38745 [-3072], 12754 [-2688],
116298 [-2176], 78666 [-1792], 13314 [-1408], 195678 [-1280],
195888 [-896], 63756 [-512], 194649 [-384], 7119 [-128],
258854 [0], 128982 [384], 117579 [512], 29631 [768], 195530
[896], 2569 [1152], 130977 [1280], 38346 [1408], 43722
[1664], 76881 [1792], 6804 [2048], 65352 [2176], 5880 [2304],
462 [2432], 28434 [2560], 13104 [2688], 7056 [2944], 13125
[3072], 966 [3328], 7140 [3456], 63 [3712], 2534 [3840], 504
[4224], 63 [4608], 7 [4992], 1 [298880], 3 [299264], 3
[300160],



Conjecture VI is false

Recall this conjectures claims that the minimal value is a power of
2. We found exactely 3 in dimension 21 :

I s = 1198373 : 44100 [-6656], 312420 [-5888], 932802 [-5120],
1561332 [-4352], 1559748 [-3584], 933828 [-2816], 104700
[-2304], 312888 [-2048], 625578 [-1536], 44124 [-1280],
1559172 [-768], 2077957 [0], 1562208 [768], 623634 [1536],
103644 [2048], 103760 [2304], 519528 [2816], 1039038 [3584],
1039452 [4352], 518514 [5120], 104916 [5888], 57432 [6400],
231504 [7168], 345036 [7936], 232080 [8704], 56844 [9472],
18886 [10752], 58524 [11520], 57492 [12288], 19452 [13056],
3720 [15104], 8328 [15872], 3744 [16640], 360 [19456], 456
[20224], 8 [23808], 1 [2391040], 3 [2394112], 3 [2401280],



Size spectrum distribution



Number of zeroes distribution



Valuation distribution



Exponent of high valuation

ν nb. of s

2 1
3 12
4 155
5 1549
6 11396
7 68348
8 260754
9 287221

10 18228
11 249
12 8

valuation of AB-exponent 13 79
15 3
25 1



J-set

Using Stickelberger’s conruences on Gauss one can prove that the
valuation of d is :

val (d) ≥ min
1≤j≤q−2

wt (−j) + wt (jd) =: ν

with equality when (d , 2m − 1) = 1. One can, of course, use
McEliece theorem to get this result but. . .McEliece theorem
depend on Stickelberger’s congruences also !

I The J-set of d :

J = {j | wt (−j) + wt (jd) = ν}

f̂ (a) ≡ 2ν
∑
j∈J

adj (mod 2ν+1)

In particular, d is AB iff ν = m+1
2 and a 7→

∑
j∈J adj is balanced.



Sieving good candidates

We remark that all the exponents of the form

d =
−r

s

where wt (r) + wt (s) ≤ n−1
2 are not AB-exponents.

Proof.
For such a d , we have

wt (s) + wt (−sd) = wt (s) + wt (r) <
m + 1

2
.

Therefore it exists a such that

F̂ (a) 6= ±2(m+1)/2



Sieving good candidates

Generate all the pair (r , s) with

wt (s) ≤ wt (r), wt (s) + wt (r) ≤ m − 1

2
.

and mark d = −r
s as a bad exponent.

I All the exponents which are not marked have valuation less or
equal to m−1

2 .

I Aan exponent which is not marked as bad is good candidates
to be AB-exponents.

I The work factor for sieving is about 21.2m.

I The set of candidates has a very small size.



Checking Dobbertin farther

We detemine all the good candidates up to the dimension 33.

I 69 for dimension 27.

I 80 for dimension 29.

I 93 for dimension 31.

I 141 for dimension 33.

All these exponents are Kasami-Welch exponents except a few
exceptions : Niho and Welch exponent, but also, for each odd m,
3 new exponents of valution m+1

2 with a 5-valued spectrum.



Exceptions of valuation m+1
2

m d bits spec size

19 481 0000000000111100001 5
767 0000000001011111111 5

20165 0000100111011000101 5
21 1535 000000000010111111111 5

1985 000000000011111000001 5
161323 000100111011000101011 5

23 1985 00000000000011111000001 5
3071 00000000000101111111111 5

645307 00010011101100010111011 5
25 6143 0000000000001011111111111 5

8065 0000000000001111110000001 5
2581111 0001001110110001001110111 5



Exceptions in another form

m d equiv. numerator

19 481 545 / 3 9 5 0
767 769 9 8 0

20165 13 / 3 3 2 0
21 1535 1537 10 9 0

1985 2113 / 3 11 6 0
161323 13 / 3 3 2 0

23 1985 2113 / 3 11 6 0
3071 3073 11 10 0

645307 13 / 3 3 2 0



Exceptions of valuation m+1
2

m d bits spec size

27 8065 000000000000001111110000001 5
12287 000000000000010111111111111 5

10324441 000100111011000100111011001 5
29 24575 00000000000000101111111111111 5

32513 00000000000000111111100000001 5
41298235 00010011101100010100100111011 5

31 32513 0000000000000000111111100000001 5
49151 0000000000000001011111111111111 5

82595525 0000100111011000100111011000101 5
33 98303 000000000000000010111111111111111 ?

130561 000000000000000011111111000000001 ?
660764203 000100111011000100111011000101011 ?
925070009 000110111001000110111001010111001 ?

1265184173 001001011011010010010110110101101 ?



Exceptions in another form

m d equiv. numerator

27 8065 8321 / 3 13 7 0
12287 12289 13 12 0

10324441 13 / 3 3 2 0
29 24575 24577 14 13 0

32513 33025 / 3 15 8 0
41298235 13 / 3 3 2 0

31 32513 33025 / 3 15 8 0
49151 49153 15 14 0

82595525 13 / 3 3 2 0
33 98303 98305 16 15 0

130561 131585 / 3 17 9 0
660764203 13 / 3 3 2 0



Modular add-carry algorithm

Let j be a residue modulo q − 1.

j = (jm−1 . . . j1j0) dj = (sm−1 . . . s1s0)

Evans, Hollmann, Krattenthaler and Xiang introduce the modular
add-carry algorithm to analyze the weight of dj . There exist carries
0 ≤ ci < wt (d) such that:

∀i , 2ci + si =
∑

k∈supp (d)

ji−k + ci−1

Adding these m equalities:∑
i

ci + wt (dj) = wt (d)wt (j)

whence

wt (jd) + wt(−j) = (wt (d)− 1)wt (j)−
∑

i

ci + m



J-set and cycles in graph

Assume that
d = 2L + . . . + 20

We consider the graph of order 2L+1wt (d) vertices and edges:

(jL, . . . , j0, c) −→ (∗, jL . . . , j1, c
′)

where
c ′ = (c +

∑
k∈supp (d)

jL−k)/2

We define the cost of the vertex (j , c)

K (j , c) = (wt (d)− 1)jL − c

The cycles of length m minimizing the cost function correspond to
the elements of the Jset.



Example d = 3



Cost d = 3

The cost of an elementary cycle is of length 2L or 2L + 1 is greater
than −L : the valuation is greater or equal to bm+1

2 c. The two
cycles of type (2,−1) and (3,−1) shows this is the exact value.



Graph for 13/3



The graph after simplifictaion



Costs for 13/3



Cycles analysis

I The cost of elementary cycles of length 2L or 2L + 1 are
greater or equal to −L (computer).

val (
13

3
) ≥ m + 1

2

I There exists a cycle of type (2,−1) connected to cycle of type
(5,−2) :

val (
13

3
) =

m + 1

2

Indeed, if m = 5 + 2L then one can loop L times in the cycle
of type (2,−1) and one time over the cycle of type (5,−2) for
a total cost of m−1

2



Conclusion

I All the main conjecture are checked up to 25

I Dobbertin conjecture up to 33

I New nice exponents :

2
m−1

2 + 2
m−3

2 + 1,
13

3

And according to the congruence of m modulo 4 :

2
m−1

2 + 2
m+1

4 + 1

3

or
2

m+1
2 + 2

m−1
4 + 1

3

I By mean of not usual tools, we determined the valuation of
the nice exponent 13/3.
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