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Linear Isometry

Let K be a finite field, n a positive interger

Hamming isometry

A linear map f : C → Kn that preserves the Hamming weight over a
subspace C of Kn.

∀x ∈ C , wh

(
f (x)

)
= wh(x).

where wh(x) =
∑n

i=1 h(xi ) is the Hamming weight of x .

h : K → N, x 7→ h(x) =

{
1, x 6= 0;

0, x = 0.
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Monomial transformation

Let (ei )1≤i≤n be the canonical basis of Kn. An isometry over the full
space Kn maps the unit sphere on itself

∀i , ei 7→ λieπ(i).

that is a monomial transformation of Kn whose λi ’s are the scalars.

Hamming isometry over Kn

An isometry f over the full space Kn

f (x1, x2, . . . , xn) = (λ1xπ(1), λ1xπ(2), . . . , λnxπ(n))

U-monomial

An U-monomial transformation has scalars in U 6 K×.
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MacWilliams Extension Theorem

isometry over a subspace

If f is an isometry over a subspace C of Kn then

f (x1, x2, . . . , xn) = (λ1xπ(1), λ1xπ(2), . . . , λnxπ(n))

In other words,

Theorem (MacWilliams, 1964)

An isometry over C ⊆ Kn extends to an isometry over Kn.

Generalizations,

The theorem is valid over the Hamming spaces Rn where A is a finite
Frobenius ring commutative or not.

In this talk, we are interested by the extension property in the case of
Lee metric.
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Composition of a vector

Let U be a subgroup of K×.

G := K×/U

One defines the composition of x ∈ Kn relatively to U

CU(x) : G → N

that send r ∈ G on
cr (x) = ]{i | xi ∈ rU}.

U-preserving map

A linear map f : C → Kn such that

∀x ∈ C , CU(x) = CU(f (x)),
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Goldberg Extension Theorem

preserving map over Kn

The U-preserving maps over Kn are precisely the U-monomial
transformations.

Theorem (Goldberg, 1980)

A linear U-preserving map extends to U-monomial transformation.

In particular

Goldberg =⇒ MacWilliams
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Weight and isometry in general

We replace h by p !

p : K → C, such that p(0) = 0.

wp(x) =
∑n

i=1 p(xi ).

Of course, (x , y) 7→ wp(y − x) is not a distance in general but

p-isometry

A linear map f : C → Kn such that

∀x ∈ C , wp(x) = wp

(
f (x)

)
.
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Extensibility Property

The symmetry group of p.

U(p) = {λ ∈ K× | ∀x ∈ K , p(λx) = p(x)}. 6 K×

Extension Property

We say the extension property holds for the weight p when each
p-isometry of Kn is the restriction of a U(p)-monomial map.
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A determinantal criterion

Recall that G := K×/U where U = U(p).
If

∆p =

∣∣∣∣∣∣∣∣
...

. . . p(rs−1) . . .
...

∣∣∣∣∣∣∣∣
r ,s∈G

6= 0

then the extension property holds for the metric p.

∆p =
∏
χ∈Ĝ

p̂(χ)

where p̂(χ) =
∑

s∈G p(s)χ(s) is the Fourier coefficient of p at χ.

Philippe Langevin (IMATH, université de Toulon) last revision June 13, 2016. 9 / 18



A determinantal criterion

Recall that G := K×/U where U = U(p).
If

∆p =

∣∣∣∣∣∣∣∣
...

. . . p(rs−1) . . .
...

∣∣∣∣∣∣∣∣
r ,s∈G

6= 0

then the extension property holds for the metric p.

∆p =
∏
χ∈Ĝ
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Lee metric
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Lee metric

We assume K := F` where ` is an odd prime. We consider the Lee and
Euclidean weights :

l(t) =

{
t, 0 ≤ t ≤ `/2;

`− t, `/2 < t < `;
e(t) = l(t)2.

with the common symmetry

U := U(l) = {−1,+1} = U(e).

Theorem (main result)

If ` is an odd prime then ∆l 6= 0 and ∆e 6= 0.
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Fourier coefficient of the Lee map

The quotient group

G := F`×/{±1} = {1, 2, . . . , (`− 1)/2}

is cyclic of order n := (`− 1)/2.
we want to prove :

∀χ ∈ Ĝ , 0 6= l̂(χ) =
∑
s∈G

l(s)χ(s).

It is trivial when ` = 2p + 1, p prime.

Barra proved the case ` = 4p + 1.
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Fourier analysis

We identify Ĝ with the group of even characters of F` :

Ĝ = {χ ∈ F̂`× | χ(−1) = 1}

The Fourier coefficients of l and e are given by

l̂(χ) =
∑
x∈G

l(x)χ(x) =
∑
k<`/2

l(k)χ(k) =
∑
k<`/2

kχ(k)

ê(χ) =
∑
x∈G

e(x)χ(x) =
∑
k<`/2

e(k)χ(k) =
∑
k<`/2

k2χ(k)
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Links between the determinants

It is easy to verify the following quadratic relation holds

l(2x)2 − 4l(x)2 =
(
l(2x)− 2l(x)

)
`.

In other words
e(2x)− 4e(x) =

(
l(2x)− 2l(x)

)
`.

On spectra

(χ̄(2)− 4) ê(χ) = (χ̄(2)− 2) l̂(χ) `.

Scolie

Let r be the smallest positive integer such that 2r ≡ ±1 mod `.

(2r + 1)
`−1
2r ∆e = `

`−1
2 ∆l.
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basic fact for non trivial even characters

Let 1 6= χ is even,

1̂(χ) = 2
∑
k<`/2

χ(k) = 0.

The first generalized Bernoulli’s number vanishes too

B1(χ) =
1

`

∑̀
k=1

kχ(k) = 0

We want to prove that

0 6= 1

`

∑
k<`/2

kχ(k) = l̂(χ)
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Consequence of l̂(χ) = 0 on the 2nd Bernoulli’s number

Let us observe the consequence of

l̂(χ) = 0= ê(χ), 1 6= χ, χ(−1) = 1,

on the second generalized Bernoulli’s number

B2(χ) =
1

2`

∑̀
k=1

(k2 − lk)χ(k).

2`B2(χ) = 2ê(χ)− 2l̂(χ)`+ 1̂(χ)`2

= zero.
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Contradiction

From the theory of L-functions

−B2(χ)/2 = L(−1, χ)

L(−1, χ) = 0 if and only if χ is odd.

whence the determinants ∆l and ∆e do not vanish.

Corollary (extension property)

The Lee and Euclidean isometries are the restriction of
{−1,+1}-monomial transformations.
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Conclusion

The Extension Property holds for the Lee metric and the Euclidean weight
with the alphabet

F` = Z/(`)

We can prove it also holds in the case of the ring

Z/(`r )

and we conjecture it holds for any ring

Z/(n)
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Philippe Langevin (IMATH, université de Toulon) last revision June 13, 2016. 18 / 18



Conclusion

The Extension Property holds for the Lee metric and the Euclidean weight
with the alphabet

F` = Z/(`)

We can prove it also holds in the case of the ring

Z/(`r )

and we conjecture it holds for any ring

Z/(n)
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