nextupprevious
Next:GAUSS SUMS Up:Les sommes de caractères Previous:FOURIER TRANSFORM I

FOURIER TRANSFORM II

Because of analysis, everybody knows the Fourier transform
\begin{displaymath}\hat f(x) =\int_{{\bf R}} f(t) e^{itx} dt\end{displaymath}
It has an algebraic analog
\begin{displaymath}\sum_{x\in G} f(x) \chi(x)=\hat f(\chi)\end{displaymath}
A character $\chi$ of $G$ is an homorphism from the group$G$ into ${{\bf C}}^\times $

    orthogonality relation

\begin{displaymath}\sum_{s\in S} \chi(s)=\begin{cases}\vert S\vert ,&\text{if $\chi\bot S$ ;}\\0,&\text{else.}\\\end{cases}\end{displaymath}

 
    Character sums method.
Let $f$ be a mapping from $X$ into $G$, the number $N(f,c)$ of solutions of $f(x)=c$ in $X$ is given by
\begin{displaymath}\begin{split}N(f,c) &= \frac 1{\vert G\vert} \sum_{\chi}\sum......{\vert G\vert} \sum_{\chi} S(f,\chi) \bar\chi(c)\\\end{split}\end{displaymath}

 
    Trivialisations.
Let $f$ and $g$ the product of convolution of $f$ by $g$
\begin{align*}f\ast g(z) &=\sum_{x+y=z} f(x)g(y),\\f\times g(z) &=\sum_{x-y=z} f(x)g(y)^{\ast}\end{align*}
the fourier transform is an homomorphism
from ${\bf C}[G]$ into${\bf C}^{\hat G}$

\begin{align*}\widehat{f\ast g}(\chi) &= \hat f(\chi)\hat g(\chi),\\\widehat{f\times g} &= \hat f(\chi){\hat g(\chi)}^{\ast}\\\end{align*}

    Poisson Formula.
Let $\Gamma$ be a subgroup of $\hat G$
\begin{displaymath}\frac {1}{\vert \Gamma\vert} \sum_{\chi\in\Gamma} \hat f(\chi) \bar\chi(z)= \sum_{s\bot \Gamma} f(s+z)\end{displaymath}

 
simple but useful !

nextupprevious
Next:GAUSS SUMS Up:Les sommes de caractères Previous:FOURIER TRANSFORM I
Philippe Langevin