nextupprevious
Next:AX THEOREM Up:Les sommes de caractères Previous:FOURIER GAME

BOUNDS

    Parseval bound.
\begin{displaymath}\sum_{a\in{\bf F}^{m}_2} \widehat{f_\chi}(a)^2 = 2^{2m}\Rightarrow R(m) \geq 2^{m/2}\end{displaymath}


    Quadratic bound
Let $q$ be a quadratic form.\begin{displaymath}\widehat{q_\chi}(a)^2 = \epsilon(a)\,2^{\frac{m+k}2}\Rightarrow R(m) \leq 2^{{\lceil{\null m/2}\rceil}}\end{displaymath}
where $\epsilon(a) \in \{-1,0,1\}$.
    Note that if $m$ is even then $R(m)= 2^{m/2}$, and highly non-linear functions are called bent functions.
    In the odd case $R(m)$ is unknown when $m\geq 9$.
I say that $f$ exceeds the quadratic bound if
\begin{displaymath}A(f) < 2^{{\lceil{m\over 2}\rceil}}\end{displaymath}

 
[Paterson and Wiedeman, 1981] There exists functions with 9 variables that exceeds the quadratic bound.
    the main conjectures are
$R(m)$ is even , and $R(m) \sim 2^{m\over 2}$
[PL, 1991] A cubic with 9 variables does not exceed the quadratic bound.
proof ?
Ax theorem implies that $\widehat{f_\chi}(a)$ is a multiple of $2^{{\lceil{m\over 3}\rceil}}$
+ Poisson formula.


nextupprevious
Next:AX THEOREM Up:Les sommes de caractères Previous:FOURIER GAME
Philippe Langevin