Let be a sequence of period , the Fourier transform of at the point is defined by
We refind the sequence by the inversion formula
Moreover, the correlation of satisfies
back to the Legendre sequences,
which since
Gauss has magnitude ,
if .
The contribution of Gauss is deeper. He spent many years to prove the nice formula :
(1) |
the key point of sign determination is a relation obtained considering Gauss sums as eigenvalues of the Fourier transform.
The evaluation of some Gauss sums represents the mathematical part of my work ( and those of O.Mbodj ). It is an application of Galois theory and cyclotomic the fields.